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Preface

Markovian jump systems typically consist of a finite number of subsystems and a
jumping law governing the active/deactivate mode switches among these subsys-
tems. The subsystems are usually modeled as differential/difference equations, and
the jumping law is a continuous-time/discrete-time Markov chain. Markovian jump
systems are a powerful modeling tool in many engineering areas. For instance,
abrupt changes are often seen in practical systems, due to the abrupt environmental
disturbances, the component and interconnection failures, the abrupt changes of the
operation point for the nonlinear plant, etc. The system can be modeled as having
different dynamics before and after the abrupt changes, and the changes are usually
memoryless and thus Markovian, hence resulting in a Markovian jump system.
Indeed, Markovian jump systems can often be seen in the study of networked
control systems, circuit and power systems, flight control systems, robotic systems,
and so on, where the stability analysis, tracking, fault-tolerant control, etc., have
been extensively discussed. However, the theoretical development of Markovian
jump systems has its own challenges, mainly due to the exclusive Markovian
jumping law. It is well-known that the whole system can still be unstable even if all
the subsystems are stable, while the whole system can be stable even if all the
subsystems are unstable. Furthermore, the existence of random noises, delays,
nonlinearity, modeling error and disturbance, robust stability, H1 control and fil-
tering, adaptive control, practical stability and optimal control, etc. are also
important topics in Markovian jump systems.

This book discusses the stability analysis of different Markovian jump systems
as well as some applications. With multiple stability definitions, we analyze and
design Markovian jump systems in a systematic manner. This book is written
primarily for postgraduate students in control theory and applications, and can also
be useful for the researchers and engineers in this area. In order to use this book, the
reader should have the basic knowledge on linear control theory, matrix analysis,
optimization techniques, probability and stochastic processes.

This book contains seven chapters. A brief description of each chapter goes as
follows. Chapter 1 introduces the related history and background of Markovian
jump systems as well as the necessary definitions and notations. Chapter 2 deals
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with the robust stability and H1 control issues for a class of uncertain Markovian
jump systems with delays. Chapter 3 investigates various stochastic stability criteria
for nonlinear Markovian jump systems with asynchronous switching and extended
asynchronous switching. Chapter 4 discusses a robust adaptive control scheme for a
class of nonlinear uncertain Markovian jump systems with nonlinear
state-dependent uncertainty. Chapter 5 studies the practical stability in probability,
practical stability in the pth mean, and the practical controllability for stochastic
nonlinear Markovian jump systems. Chapter 6 considers the Markovian jump
system model for networked control systems. Chapter 7 discusses two applications
based on the Markov jump theory, i.e., the fault-tolerant control for wheeled mobile
manipulators and the jump linear quadratic regulator problem.

We hope the reader will find this book useful.

Hefei, China Yu Kang
May 2017
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Chapter 1
Introduction to Markovian Jump Systems

This chapter first introduces the basic concepts of MJSs, and then some research
topics including the robust stochastic stability, the imprecise jumping parameters, the
nonlinear Markovian jump systems, the practical stability, etc. Notations, necessary
definitions and useful lemmas are also given.

1.1 Background

With the fast development and wide applications of the information technology, a
large number of man-made systems are emerging in various areas including commu-
nications, aeronautics, integrated manufactures, transport management, etc. These
systems are featured by the distinct state driven by the discrete events, and are
essentially complex due to the nonlinear, stochastic and emergent behaviours. This
thus means that the theories of conventional Continuous Variable Dynamic Systems
(CVDS) are not directly applicable, and the theories of Discrete Event Dynamic
Systems (DEDS) developed in 1980’s become the effective methodology for such
complex systems. Furthermore, with the emergence of various complex systems due
to the developments of the large-scale parallel computers, global communications
and high accuracymanufactures, etc., the two aforementioned types of systems inter-
act with each other and further form the so-called Hybrid Dynamic Systems (HDSs).
This new type of systems now become key to the modern information technology
and one of the pioneer science and technology that combines the systems theory,
control theory and operation research.

Mathematically, HDSs refer to those dynamic systems whose state space consists
of both the Euclidean space and the bounded set of the discrete events. In such
systems, the evolution of the systems states is driven by both the continuous time and
the discrete event. Markovian jump systems are one important class of HDSs, where
the discrete events are governed by aMarkov process.Various successful applications

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2018
Y. Kang et al., Stability Analysis of Markovian Jump Systems,
DOI 10.1007/978-981-10-3860-0_1

1

ybzhao@zjut.edu.cn



2 1 Introduction to Markovian Jump Systems

of MJSs can be seen in modern communication technology, fault tolerance control,
etc., and the related theoretical challenges have attracted interests over the last several
decades.

Since introduced byKrasovskii Lidskii in 1961, the research onMJSs has attracted
much attention from almost all aspects of the control community. Stability has always
been an important focus in MJSs [12, 27, 84]. For example, Mariton obtained the
sufficient conditions for themean-square stability and stability in probability ofMJSs
using the Lyapunov method, and then the sufficient and necessary conditions using
Kronecker product [67–69]; Feng et.al. proved the equivalence between the second
order moments of MJSs which is sufficient for the stability in probability [36]; Other
works on the stability of MJSs can be seen in, e.g., [1, 11, 18, 20, 26, 32, 35, 36,
49, 50, 75, 81]. Based on those studies, other properties like controllability [49, 50,
88], observability [24, 25, 49, 50, 92], optimal control [22, 23, 33, 37, 39, 49, 50],
and so on, have also been studied. Since 1990s the theoretical foundations for linear
MJSs in continuous time have been constructed. Ongoing are more general forms of
MJSs likeMJSs in discrete time [20, 23, 36, 88], nonlinear MJSs [85, 96, 100–102],
and so forth.

Since a large number of practical systems can be modelled as MJSs, the study
of MJSs then has both theoretical as well as practical importance. We also notice
that significant improvements on the theory of MJSs are still needed. This book will
cover a wide range of topics related to MJSs, e.g., the robustness and the practical
stability of MJSs, its applications in mobile robots and networked control systems,
etc. These discussions should be of interest to the reader in this field.

1.1.1 Robust Stochastic Stability

Research on this area has been reported extensively, see, e.g., [9–11, 13–16, 19, 22].
To name a few, Boukas and Liu proposed a guaranteed cost robust control strategy for
uncertain discrete time MJSs in [14], Chen and Benjelloun et al. provided solutions
for uncertain MJSs with and without delays, respectively in [13, 22], and output
feedback based strategies can be found in [16]. However thoseworks are restrained to
know bounded norms for the unknown parts [10], or some other forms of restrictions
are enforced, and works are less seen for more general cases with unknown norm
bound.

Lasalle stability principle is often the foundational basis of the parameter estima-
tion based design of the adaptive control strategy for general non-jump systems, and
therefore the key problem in dealing with jump systems is also the construction of the
corresponding Lasalle stability principle. This has been the central of the research
in the last several decades. For example, in 1990 Ji and Chizeck in [50] and Mariton
in [70] discussed the asymptotic stability of linear jump systems

ẋ(t) = A(r(t))x(t) + B(r(t))u(t).

ybzhao@zjut.edu.cn



1.1 Background 3

In 1996 Shaikhet included delay in the discussion, that is,

dx(t) = A1(r(t))x(t)dt + A2(r(t))x(t − τ)dt + σ(x(t), r(t))dB(t).

Mao proposed such stability conditions for more general nonlinear and delayed
jump systems in [64, 66]. In all these works, the objective is to make the system state
approach to zero (in probability or in mean-square).

Mao [65] and Deng [30] have set up the Lasalle stabilility principle for general
nonlinear stochastic systems by different means,

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t).

In 1996 Basak proposed the local asymptotic stability concept for semi-linear
jump systems [7]

dx(t) = A(r(t))x(t)dt + σ(x(t), r(t))dB(t),

and then Mao extended this to nonlinear systems

dx(t) = f (x(t), r(t))dt + σ(x(t), r(t))dB(t).

All these works lay the foundation of the further progress on the theory of jump
systems.

1.1.2 Imprecise Jumping Parameters

Themain theoretical foundation for the robust analysis and synthesis of systems with
uncertain parameters in the time domain is the Lyapunov stability theory. In the early
days one main method is to use the Riccati equation, which convents the problem to
the solvability of a Riccati type matrix equation, and then gives the conditions for
robust stability as well as the design method for the robust controller. This method
pre-requires certain parameters to be given, and the selection of the parameters has
a significant effect on the solvability and then the conservativeness. Since 1990s,
linear matrix inequality (LMI) based methods become popular, since many control
problems can be converted to the feasibility of a set of LMIs, or the convex optimiza-
tion problem subject to some LMI-based constraints. This convex constraint means
that a set of controllers can be obtained subject to the predetermined constraints,
which is particularly useful in dealing with multi-target control problems. The LMI
toolbox developed by MATLAB provides us with the powerful computational tool
for LMI based design.

On the other hand, H∞ control has been a fast developing field in control theory
since its first introduction by Zames in 1981 [103]. Related works include, e.g., Youla
based parametric, Nevanlinna-Pick theory and model fitting method, the solution to

ybzhao@zjut.edu.cn



4 1 Introduction to Markovian Jump Systems

Riccati equation in the time domain, and so on. Furthermore, the robust control
toolbox in MATLAB makes H∞ control theory a practical solution to engineering
systems [31, 86, 99]. Works on the robust control of linear jump systems based on
H∞ theory have also been reported [2, 8, 21, 87, 90, 97].

One important assumption in exiting works is that the mode of the Markov jump
parameter r(t) is accurately measurable, which, however, is often impossible, due to
the poor quality of the device or external disturbance. Therefore, it becomes more
and more important to design the robust controller in the presence of inaccurate
measurement of Markov jump parameters.

1.1.3 Nonlinear Markovian Jump Systems

Practical systems are essentially nonlinear. The nonlinearity can be intrinsic to the
control system, or due to the practical constraints such as the saturation, or created
by the nonlinear control law like the Bang-bang control. Works have been reported
for nonlinear jump systems in recent years. These works have considered nonlinear
jump systems with uncertain parameters [2, 17, 76], the stability of such systems [3,
4], filter design [94], jump parameter detection and filter design [71], robust control
in the presence of the Lure term [77], and so on.

One common assumption in these existing works is that the the nonlinear terms
are known or upper bounded by a known bound [17, 77], and these bounds are
often needed in the controller design. These assumptions may not be feasible in
practice. For such cases adaptive control may be useful. Works have been done for
the robust adaptive control for deterministic nonlinear jump systems, including the
work proposed by [43, 80].

On the other hand, the global stabilization of nonlinear systems has been a pio-
neering field in control theory. The Lyapunov theory is one of the main basis for such
systems [6, 89]. It is noticed that no universal methodology exists for all nonlinear
systems, but for those with strict feedback form or equivalent nonlinear systems,
backstepping method is probably the most efficient solution [54]. A large volume of
results in recent years have proven the effectiveness of the backstepping method [34,
40–42, 51–53, 78, 79]. Some other works can also be seen in [38] for the inverse
optimizationmethod, and the extensions of the backsteppingmethod in various cases
[5, 28–30, 58–60].

Though effective, no results on the controller design for nonlinear MJSs based on
the backstepping method have been reported to date. It is known that the first step
of the backstepping method is the state transformation, and then the construct of the
Lyapunov function and virtual controller based on the new state. This can be fine for
general continuous nonlinear systems, but theMarkov jump parametersmake that the
transformed states are dependent on those parameters and are not continuous. This
difficulty proposes great challenges for the controller design and stability analysis
for nonlinear MJSs.

ybzhao@zjut.edu.cn



1.1 Background 5

1.1.4 Practical Stability

One essential problem in studying the mathematical models for various practical
systems is the stability. Lyapunov stability was first proposed in 1892 by Lyapunov
in his PhD thesis. In such a theory the properties of the solutions to a set of n-
dimensional differential equations are converted to the discussion of a scale function
(the so-called Lyapunov function) and its derivatives, successfully constructing the
fundamental framework of general stability theory. This theory and associated tools
have been widely applied to various areas, including both deterministic systems [47,
57, 98] and stochastic ones [44, 62, 63].

Another stability definition is practical stability. From the practical viewpoint, a
system can be thought of as stable if its solution is within certain region around the
equilibrium. This is not mathematically stable but often acceptable in practice. For
example, a rocket may contain trajectories which are unstable in the mathematical
sense but can be practically acceptable. This fact thus derives another stability def-
inition, i.e., the so-called practical stability, which was first introduced by LaSalle
and Lefschetz in 1961 [56], and further improved later on by Lakshmikantham [55],
Martynyuk [72, 73], and so on. The general theory for practical stability is still ongo-
ing. In this book we will discuss the practical stability of MJSs in the probability
sense and the corresponding controllability and optimal control problems.

1.1.5 Networked Control Systems

Networked control systems (NCSs) are control systems that are closed via some
form of communication networks [45]. These communication networks can be either
control-oriented, such as the Control Area Network (CAN), DeviceNet, etc., or non-
control-optimized, like the widely used Internet. Most challenges emerge due to the
introduction of the communication networks to the control systems, since lossless
and real-time data transmission are usually not guaranteed by the communication
network, especially those data networks that are not specifically optimized for the
real-time control purpose [46, 74, 82, 83, 93, 95, 104].

MJSs can play a significant role in the development of NCSs, since NCSs are
essentially composed of two different types of signals, i.e. the controlled plant which
is usually in continuous time, and the computer-based data transmission which is
essentially in discrete time, thus making “hybrid” and “switch” some intrinsic fea-
tures of NCSs. Considerable works have been reported on the MJS modelling and
analysis of NCSs, and more works are still expected for the future development of
NCSs.
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6 1 Introduction to Markovian Jump Systems

1.2 Model Description and Preliminaries

Aspointed out earlier, the state space ofHybridDynamic Systems consists of both the
Euclidean vector spaceRn and the set of the discrete eventsS , and can be categorized
as two types, those in discrete time and in continuous time, respectively. We now
give the basic model for HDSs in continuous time with Markov jump parameters
[70].

Let r(t) be aMarkov chain in continuous time defined on the complete probability
space (Ω,F , {Ft }t≥0, P) with its domain beingS = {1, 2, · · · , N }. Each r(t) ∈
S is called a “regime” of the system. Ω is the sample space, F is σ -algebra,
{Ft }t≥0 is the sub-σ -algebra reference set which is continuous from the right on
t , Ft1 ⊂ Ft2 ⊂ F , (t1 < t2), F0 contains all P-null set, and P is the probability
measure. Then the basic model for a Markovian jump system can be described as
follows,

{
ẋ(t) = f (x(t), u(t), r(t), t),
y(t) = h(x(t), r(t), t),

(1.1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the Euclidean vector space, representing

the state, input and output, respectively, f (·), h(·) are, respectively, the analytic
mapping of Rn × R

m × S × R → R
n and R

n × S × R → R
p which satisfy the

general increase and smooth conditions [70], to ensure the unique solution for x(t0)
and u(t) under arbitrary regime and initial state.

Let φt ∈ R
N be the characteristic function of r(t), i.e.,

φti =
{
1, r(t) = i;
0, r(t) �= i,

i = 1, 2, · · · , N .

Then the functions in the jump system can be described by the following three
expressions,

f (·, r(t)), f (·, φt ),

N∑
i=1

fi (·)φti ,

and φt satisfies

dφt = Π ′φt dt + dMt , (1.2)

where Mt is {Ft }-martingale, Π = [πi j ]i, j∈S is the state transition matrix of r(t)
given by

P{r(t + Δ) = j |r(t) = i} =
{

πi jΔ + o(Δ), i �= j;
1 + πi iΔ + o(Δ), i = j,

(1.3)
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1.2 Model Description and Preliminaries 7

where

lim
Δ→0

o(Δ)/Δ = 0, (Δ > 0),

and

πi i = −
∑
j �=i

πi j , (πi j ≥ 0, j �= i).

(1.4)

For simplicity hereafterwe assume t0 = 0, x(0) = x0, r(0) = r0 are constants. For

matrix F(r(t)), we may simplify F(r(t)) as Fi for r(t) = i , i.e., Fi
	= F(r(t))|r(t)=i ,

when no confusion is caused.

Remark 1.1 Another category of HDSs is the switched systems described by

ẋ(t) = fσ(t,x(t))(t, x(t), u(t)), x(t0) = x0, (1.5)

where x(·) ∈ R
n is the system state, u(·) ∈ R

m is the input, σ(t, x) : [t0,+∞) ×
R

n → I (I is the index set which can be infinity) is piecewise constant on (t, x)
and right continuous on t , referred to as the switch law or switch strategy for system
(1.5). The switch time instant is

tk = inf
{
t > tk−1 : σ(t, x(t)) �= σ(tk−1, x(tk−1))

}
, k = 1, 2, · · ·

where

inf
k≥0

(tk − tk−1) = lim sup
t→∞

Number of switches in [t0, t)
t − t0

are the dwell time and switch frequency of σ(·, ·), respectively. The switch law
σ(t, x) can be dependent on the events defined by the time and system state. Further,
the switch law is controlled if σ(t, x) is dependent on u as well [91].

The main difference between the jump system studied in this book and general
swithed systems is that the discrete dynamics in the former is uncontrolled and
independent on the system state, while switch itself can be a way of stabilization for
the latter.

The following definitions and theories are needed.

Definition 1.1 (Infinitesimal operator) The effect of the infinitesimal operator of
(x(t), r(t)), L, on scale function g(x(t), r(t), t), is defined as
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8 1 Introduction to Markovian Jump Systems

Lg(x(t), r(t), t)

= lim
Δ→0

1

Δ

[
E

{
g(x(t), r(t), t)

∣∣x(t−), r(t−), t−
} − g(x(t−), r(t−), t−)

]
,

where Δ = t − t−.

Definition 1.2 (Uniform boundness in probablityρ) The state xt of a HDS is uni-
formly bounded in probability ρ with the bound ε if the solution of the HDS xt (x0)
is such that

P

{
sup

0≤t<∞
||xt (x0)|| ≥ ε

}
≤ 1 − ρ. (1.6)

Definition 1.3 (Uniform boundness with probablity 1) The state xt of a HDS is
uniformly bounded with probability 1 and the bound is ε if the solution of the HDS
xs(x0) is such that

lim
t→∞ P

{
sup
s≥t

||xs(x0)|| ≥ ε

}
= 0. (1.7)

Definition 1.4 (Stochastic stability) A HDS is stochastically stable if the solution
of the HDS xt (x0) is such that

∫ ∞

0
E

{‖xt (x0)‖2} dt < ∞.

Definition 1.5 (Stability with probability 1) The equilibrium of a HDS is stable with
probability 1 if the solution of the HDS xt (x0) is such that

P

{
lim||x0||→0

sup
0≤t<∞

||xt (x0)|| = 0

}
= 1. (1.8)

Definition 1.6 (Asymptotic stability in mean-square) A HDS is asymptotically sta-
ble in mean-square if the solution of the HDSs xt (x0) is such that

lim
t→∞ E

{‖xt (x0)‖2} = 0.

Definition 1.7 (Asymptotic stability with probability 1) The equilibrium of a HDS
is asymptotically stable with probability 1 if for any ε > 0, there exists δ > 0, such
that when ‖ x0 ‖≤ δ the solution of the HDS xt (x0) satisfies

lim
t→∞ P

{
sup
s≥t

‖ xs(x0) ‖≥ ε
} = 0. (1.9)
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1.2 Model Description and Preliminaries 9

Definition 1.8 (Exponential stability in p-thmoment)AHDS is exponentially stable
in p-th moment if there exists α > 0, β > 0 such that its solution xt (x0) satisfies

E{||xt (x0)||p} ≤ β||x0||pe−αt .

In particular, it is exponentially stable in mean-squareif p = 2.

Consider the following switched stochastic nonlinear retarded systems

dx = f (t, xt , ν, σ )dt + g(t, xt , ν, σ )dB, (1.10)

where x(t) ∈ R
n is the state vector, ν(t) ∈ L l∞ is the control input, B(t) is the m-

dimensional Brownian motion which is defined on the complete probability space
(Ω,F , {Ft }t≥t0 , P), with Ω being a sample space.

Definition 1.9 [61](stochastic input-to-state stability, SISS) The system
(1.10) is stochastic input-to-state stability(SISS) if for any given ε > 0, there exist a
K L function β(·, ·), a K function γ (·) such that

P{|x(t)| < β(|x0|, t) + γ (‖u‖[0,t))} ≥ 1 − ε, ∀ t ≥ 0,∀ x0 ∈ R
n (1.11)

where‖u(s)‖ = infA ⊂Ω,P(A )=0 sup{|u(ω, s)| : ω ∈ Ω\A },‖u‖[0,t) = sup
s∈[0,t)

‖u(s)‖.

Definition 1.10 [61](globally asymptotically stability in probability, GASiP) The
equilibrium x = 0 of system (1.10) is globally asymptotically stable in probability
(GASiP) if for any ε > 0 there existsK L function β(·, ·) such that, with the input
u = 0,

P{|x(t)| < β(|x0|, t − t0)} ≥ 1 − ε, ∀t ≥ t0. (1.12)

Definition 1.11 [48](pth moment, ISS) The system (1.10) is said to be pth (p >

0) moment input-to-state stable if there exist β ∈ K L and γ ∈ K such that the
solution x(t) = x(t; t0, x0, i0) satisfies

E |x(t)|p ≤ β(E |x0|p, t) + γ (‖u‖∞), ∀ t ≥ 0. (1.13)

for any essentially bounded input u ∈ R
m and any initial data x0 ∈ R

n , i0 ∈ S , where
‖u‖∞ = sups∈[0,∞) ‖u(s)‖.
Definition 1.12 [105] (input-to-state stable in mean, ISSiM) The system (1.10) is
input-to-state stable in mean (ISSiM) if there exist β ∈ K L and α, γ ∈ K∞, such
that for any u ∈ R

m , x0 ∈ R
n , we have

E[α(|x(t)|)] ≤ β(|x0|, t) + γ (‖u‖[0,t)),∀ t ≥ 0. (1.14)

ybzhao@zjut.edu.cn



10 1 Introduction to Markovian Jump Systems

Theorem 1.1 [70] Consider the following HDS,

ẋ(t) = f (x(t), u(t), r(t), t),

where for any r(t) ∈ S , f (·) are continuous on t, x(t), and the increase and smooth
conditions are satisfied so that the unique solution exists for any regime and initial
state. Let g(x(t), r(t), t) be a scalar function of x(t), r(t), and t. Then, for r(t) = i ,
the infinitesimal generator, L, is

Lg(x(t), i, t) = gt (x(t), i, t) + f T (x(t), u(t), i, t)gx (x(t), i, t) +
N∑
j=1

πi j g(x(t), j, t),

(1.15)

where gt (x(t), i, t), gx (x(t), i, t) are the partial derivatives on t and x(t), respectively.

Theorem 1.2 [36] For linear HDSs

{
ẋ(t) = A(r(t))x(t),
x(0) = x0,

(1.16)

the following statements hold,

a. Asymptotic stability in mean-square, expontial stability in mean-square and
stochastic stability are equivalent.

b. Stability almost everywhere can be inferred from asymptotic stability in mean-
square, expontial stability in mean-square or stochastic stability, but not true vice
versa.
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Chapter 2
Robust Stochastic Stability

This chapter investigates the robust output feedback H∞ control for a class of uncer-
tainMarkovian jump linear systems with mode-dependent time-varying time delays.
With known bounds of the system uncertainties and the control gain variations, we
develop the sufficient conditions to guarantee the robust stochastic stability and the
γ -disturbance H∞ attenuation for the closed-loop system. These conditions can be
solved by LMI Toolbox efficiently. Note here that the control design is based on
the measured Markovian jumping parameter rot that may be inconsistent with the
true jumping parameter rt due to the measurement noises.

2.1 Introduction

Robust stability for time-delayed Markovian jump systems with uncertainties has
always been a challenging problem and has been widely investigated so far. In this
field H∞ design has been one popular tool for uncertain delayed Markovian jump
system due to its capability of dealing with disturbance attenuation [2, 7, 8]. For
example, in [7], the results for the robust stochastic stability and γ -suboptimal H∞
state-feedback controller design were presented. In [2], a sufficient condition for
robust stochastic stability and H∞-disturbance attenuation was derived for a class
of uncertain delayed Markovian jump linear systems based on the Lyapunov func-
tional method, where the uncertainties are of the norm-bounded type. In [8] the
delay-dependent H∞ control problemwas considered by adopting a descriptormodel
transformation method and a new bounding inequality.

In most existing works, the jumping parameters are often assumed to be precisely
known. This assumption is usually not true in practice while the system states can
often be observed. Therefore, the Wonham filter can be used to estimate the jumping
parameters using the given systemmatrices. To address this problem, the adaptive sta-
bilization was studied in [6], where the existence condition and the adaptive certainty
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16 2 Robust Stochastic Stability

equivalence feedback control were proposed by the parameter estimation technique
of nonlinear filters. On the other hand, imprecise measurements are often present in
analog systems and quantization error sometimes can not be ignored in digital con-
trol systems, making precise control implementation almost impossible. To make it
worse, the overall systems will have poor stability margins if these robust control
strategies are not properly implemented, which applies to common techniques such
as H∞, l1 or μ synthesis, etc.

On a parallel line, time delays often exist in practical systems such as mechan-
ical systems, chemical processes, neural networks. Delays can deteriorate the sys-
tem performance or even unstabilize the system. For the stability analysis and con-
troller design of such delayed systems the Lyapunov-Krasovskii functionals (LKFs)
approaches are widely used [14–16]. In order to reduce the conservatism caused
by model transformations and inequalities, many new techniques were proposed for
uncertain time delay systems [11, 12, 22, 23]. In [24], the free-weighting matrix
method was proposed to bound the cross product terms and it can reduce the conser-
vatism greatly.

In this chapter, we consider the problem of robust output-feedback H∞ control
for a class of uncertain Markovian jump linear systems with mode-dependent time-
varying delays. We also consider the measurement errors of the jumping parameters,
which are always inevitable due to the detection delays and false alarm of the identi-
fication algorithms [20]. The robust stochastic stability analysis and H∞ disturbance
attenuation design are given by using the measurement value of the jumping para-
meters directly.

2.2 Uncertain Markovian Jump Linear Systems with Time
Delays

Consider the following uncertain Markovian jump linear stochastic systems with
mode-dependent time-varying delays,

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = [A1(rt ) + ΔA1(rt , t)]x(t) + [A2(rt ) + ΔA2(rt , t)]x(t − τrt (t))
+[B1(rt ) + ΔB1(rt , t)]u(t) + B2(rt )w(t),

z(t) = [C(rt ) + ΔC(rt , t)]x(t),
x(s) = f (s), rs = r0, s ∈ [−2μ, 0],

(2.1)

where x(t) ∈ R
n , z(t) ∈ R

m3 u(t) ∈ R
m1 are the system states, system outputs,

and control inputs, respectively. A1(rt ) ∈ Rn×n , A2(rt ) ∈ R
n×n , B1(rt ) ∈ R

n×m1 ,
B2(rt ) ∈ R

n×m2 , C(rt ) ∈ R
m3×n are known real matrices denoting the nominal

system parameters, and ΔA1(rt , t) ∈ Rn×n , ΔA2(rt , t) ∈ Rn×n , ΔB1(rt , t) ∈ Rn×m1 ,
ΔC(rt , t) ∈ Rm3×n are unknown matrices representing the model uncertainties [2, 7,
9]. w(t) ∈ R

m2 is the exogenous disturbance input which satisfies w(t) ∈ L2[0,∞).
f (t) ∈ R

n is a continuous function denoting the initial states. rt is a continuous-time
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2.2 Uncertain Markovian Jump Linear Systems with Time Delays 17

Markov chain that takes value in finite setS = {1, 2, . . . , N }with the transition rate
matrix � defined in (1.3). τrt (t) represents the mode-dependent time-varying delay
that satisfies

0 < τrt (t) ≤ μrt ≤ μ < ∞, τ̇rt (t) ≤ hrt < 1, ∀ rt ∈ S (2.2)

where μrt and hrt are upper bounds of τrt (t) and τ̇rt (t), for given rt ∈ S . μ is the
common upper bounded and can be set as μ = max

i∈S
{μi }.

The following assumption is necessary to establish the main results.

Assumption 2.1 The uncertain parameters can be written as follows [27]:

ΔA1(rt , t) = H1(rt )F(rt , t)E1(rt ),

ΔA2(rt , t) = H1(rt )F(rt , t)E2(rt ),

ΔB1(rt , t) = H1(rt )F(rt , t)E3(rt ),

ΔC(rt , t) = H2(rt )F(rt , t)E4(rt ),

where H1(rt ) ∈ R
n×n f , H2(rt ) ∈ R

m3×n f , E1(rt ) ∈ R
n f ×n , E2(rt ) ∈ R

n f ×n , E3(rt ) ∈
R

n f ×m1 and E4(rt ) ∈ R
n f ×n are known real matrices, while F(rt , t) ∈ R

n f ×n f are the
uncertain matrix functions satisfying

FT (rt , t)F(rt , t) ≤ I, ∀ rt ∈ S . (2.3)

Remark 2.1 As an extension of thematching condition, the structure of the uncer-
tainties in Assumption 2.1 is widely used in the literature on robust control and
robust filter, see e.g. [1–4, 7–9, 27]. How the uncertain matrix functions F(rt , t)
affect the nominal parameters A1(rt ), A2(rt ), B1(rt ),C(rt ) can be characterized by
H1(rt ), H2(rt ), E1(rt ), E2(rt ), E3(rt ) and E4(rt )

In practical control systems, the environmental noises, external disturbance and
other modelling uncertainties unavoidably cause detection delays and false alarms
when we identify the activated system mode. Similar to [19, 20], we adopt two
stochastic processes to describe the above phenomena. One process, denoted by rt ,
is used to characterize the actual system mode in (2.1), and the other one, denoted
by rot , represents the mode we observed or measured in the practical systems. The
difference between rt and rot are mainly caused by two kinds of measurement errors,
i.e. the detection delays and false alarms. The following models are used to describe
these measurement errors.

ybzhao@zjut.edu.cn
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18 2 Robust Stochastic Stability

• The probability of jump from i to j conditional on rt , denoted by rot , can be written
as

P

⎧
⎪⎪⎨

⎪⎪⎩

rot+Δ = j

∣
∣
∣
∣
∣
∣
∣
∣

ros = i
rt0 = j
rt0− = i
s ∈ [ t0, t ]

⎫
⎪⎪⎬

⎪⎪⎭

=
{

π0
i jΔ + o(Δ), i �= j

1 + π0
i iΔ + o(Δ), i = j

(2.4)

In fact, rot can be seen as an exponentially distributed random variable with rate
πo
i j . The parameters πo

i j can be obtained by evaluating observed sample paths, and

π0
i i = −

∑

j �=i

π0
i j , (π0

i j ≥ 0, j �= i). (2.5)

• Although rt remains at i , rot can still occasionally transmit from i to j . Similarly,
we also use an independent exponential distribution with mean 1/π1

i j to describe
this scenario

P

{

rot+Δ = j

∣
∣
∣
∣
ros = i
s ∈ [ t0, t ]

}

=
{

π1
i jΔ + o(Δ), i �= j

1 + π1
i iΔ + o(Δ), i = j

(2.6)

whereπ1
i j is the false alarm rate, which can also be evaluated from observed sample

paths, and satisfies

π1
i i = −

∑

j �=i

π1
i j , (π1

i j ≥ 0, j �= i). (2.7)

For simplicity, we simplify M(rot , rt , t) as Mji (t)when rot = j, rt = i, j, i ∈ S ,
and let the initial time t0 = 0, then the initial conditions can be written as x(0) =
x0, r0 and ro0 . Note that all these initial value are deterministic.

The following dynamic output feedback controllers are to be designed.

{ ˙̂x(t) = A3(rot )̂x(t) + B3(rot )z(t),
u(t) = K (rot )̂x(t),

(2.8)

where x̂(t) ∈ R
n is the states of the controllers, and A3(rot ), B3(rot ), K (rot ) are the

unknown matrices of the controllers with appropriate dimensions to be determined.
Practically, it is impossible to implement the above controllers precisely. So, in

this chapter, the controllers with imprecise implementation are described as

u(t) = [I + α(rt )φ(rt , t)]K (rot )̂x(t), (2.9)
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2.2 Uncertain Markovian Jump Linear Systems with Time Delays 19

where α(rt )φ(rt , t) represent the additive errors that affect the controller gains. α(rt )
is a positive constant and φ(rt , t) satisfies

φT (rt , t)φ(rt , t) ≤ I, ∀rt ∈ S .

Remark 2.2 Notice that the designed controllers are dependent on the measured
jumping parameter rot . To reconfigure the controllers, the switching of controller
gains K (rot ) is based on r

o
t . However, the evolution of the dynamic systems follows

the actual mode rt , and therefore, the variations of the controller gains depend on rt
and have nothing to do with rot .

Apply the control law (2.8) to system (2.1) and denote ξ(t) = [xT (t), x̂ T (t)]T ,
we obtain the closed-loop system

⎧
⎪⎨

⎪⎩

ξ̇ (t) = A1(rot , rt , t)ξ(t) + A2(rt )I0ξ(t − τrt (t)) + B2(rt )w(t),

z(t) = [C(rt ) + ΔC(rt , t)]I0ξ(t),

I0ξ(s) = f (s), rs = r0, s ∈ [−2μ, 0],
(2.10)

where

A1 j i =
[

A1i + ΔA1i (t)
(
B1i + ΔB1i (t)

)
(I + αiφi (t)) K j

B3 j
(
Ci + ΔCi (t)

)
A3 j

]

∈ R
2n×2n,

A2i =
[
A2i + ΔA2i (t)

0

]

∈ R
2n×n, B2i =

[
B2i

0

]

∈ R
2n×m2 ,

I0 = [
I 0

] ∈ R
n×2n, f or each rot = j, rt = i, ∀i, j ∈ S .

The objectives of this chapter are as follows:

(i) Robust stabilization: Determine the nominal controller gains K (rot ) in (2.9) and
establish sufficient conditions for the system (2.1) such that the overall closed-
loop system (2.10) is robustly exponentially stable in the mean square sense;

(ii) H∞ control problem: Given a constant scalar γ > 0, determine the nominal
control gain K (rot ) in (2.9) and establish the sufficient conditions such that
the resulting closed-loop system (2.10) is robustly stochastically stable with
disturbance attenuation level γ under zero initial condition (x(0) = 0), that is

J =E

{∫ T

0

[

zT (t)z(t) − γ 2wT (t)w(t)

]

dt

}

<0,∀ w(t) �= 0,w(t) ∈ L2[0,∞). (2.11)
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20 2 Robust Stochastic Stability

2.3 Robust Control

In this section, we study the exponential mean-square stability of the time-delayed
uncertainMarkovian jump linear system (2.10)withw(t) = 0. The following lemmas
are needed in deriving the stability conditions.

Lemma 2.1 [17] Schur complement: Consider the following matrix of appropriate
dimension

Q =
[
Q11 Q12

QT
12 Q22

]

, Q22 > 0, (2.12)

then Q is positive definite if and only if Q11 − Q12Q
−1
22 Q

T
12 > 0.

Lemma 2.2 [25] Given matrices Q = QT , H, E and R = RT > 0 of appropriate
dimensions, then

Q + HFE + ET FT HT < 0

for all F satisfying FT F ≤ R, if and only if there exits some ρ > 0 such that

Q + ρHHT + ρ−1ET RE < 0.

Lemma 2.3 [19] The infinitesimal generator L of random processes can be defined
as follows.

For the following jump systems

ẋ(t) = f (x(t), u(t), rot , rt , t),

suppose that f (·) is continuous for all its variables within their domain of definition,
and satisfies the usual growth and smoothness hypothesis, g(x(t), rot , rt , t) is a scalar
continuous function of t and x(t), ∀rot , rt ∈ S . Then, the infinitesimal generator L
of the random process {x(t), rot , rt , t} can be described as follows:

• For rot = rt = i , we have

Lg(x(t), i, i, t)

= lim�→0

1

�
[
E
{
g(x(t + �), rot+�, rt+�, t + �)|x(t) = x, rot = i, rt = i, t

}

−g(x, i, i, t)]

= gt(x, i, i, t) + f T (x, u(t), i, i, t)gx (x, i, i, t) +
N∑

j=1

πi j g(x, i, j, t) (2.13)

+
N∑

j=1

π1
i j g(x, j, i, t).
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• For rot = j �= rt = i , we have

Lg(x(t), j, i, t)

= lim�→0

1

�
[
E
{
g(x(t + �), rot+�, rt+�, t + �)|x(t) = x, rot = j, rt = i, t

}

−g(x, j, i, t)]

= gt (x, j, i, t) + f T (x, u(t), j, i, t)gx (x, j, i, t) (2.14)

+ π0
j i g(x, i, i, t) − π0

j i g(x, j, i, t).

Theorem 2.1 Consider the uncertain delayed Markovian jump linear system with
w(t) = 0. If there exist symmetric positive-definite matrices Pi j , Q, Z, positive semi-
definite matrices X ji , real matrices K j ,Y ji , Tji that are of appropriate dimensions
and positive constants ρ1 j i , ρ2 j i , ρ3 j i such that

W j i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1 P1 j i B1i + ρ3 j i ET
1i E3i 0 P1 j i H1i 0 KT

j

L2 0 KT
j 0 V T

ji H2i 0
L3 ρ3 j i ET

2i E3i 0 0 0 0
L4 μZ B1i 0 μZH1i 0 0
L5 −I + ρ3 j i ET

3i E3i 0 0 0 0
L6 0 −I + ρ1 j iα

2
i I 0 0 0

L7 0 0 −ρ3 j i I 0 0
L8 0 0 0 −ρ2 j i I 0
L9 0 0 0 0 −ρ1 j i I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0 (2.15)

Γ j i =
⎡

⎣
X1 j i X2 j i I T0 Y ji

XT
2 j i X3 j i Tji

Y T
ji I0 T T

ji Z

⎤

⎦ ≥ 0, ∀ i, j ∈ S . (2.16)

where

⎡

⎢
⎢
⎢
⎢
⎣

L1
L2
L3
L4
L5
L6
L7
L8
L9

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11+ρ3 j i ET
1i E1i+ρ2 j i ET

4i E4i CT
i Vji+μX2

1 j i Φ13+ρ3 j i ET
1i E2i μAT

1i Z

V T
ji Ci+μX2T

1 j i U ji+UT
ji+Φ22 μX2

2 j i 0

ΦT
13+ρ3 j i ET

2i E1i μX2T
2 j i Φ33+ρ3 j i ET

2i E2i μAT
2i Z

μZ A1i 0 μZ A2i −μZ
BT
1i P1 j i+ρ3 j i ET

3i E1i 0 ρ3 j i ET
3i E2i μBT

1i Z
0 K j 0 0

HT
1i P1 j i 0 0 μHT

1i Z
0 HT

2i Vji 0 0
K j 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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22 2 Robust Stochastic Stability

X ji =
[
X1 j i X2 j i

XT
2 j i X3 j i

]

=
⎡

⎢
⎣

X1
1 j i X2

1 j i X1
2 j i

X2T
1 j i X3

1 j i X2
2 j i

X1T
2 j i X

2T
2 j i X3 j i

⎤

⎥
⎦

with

Φ11 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if j = i

AT
1i P1i i +P1i i A1i +

N∑

j=1
πi j P1i j +

N∑

j=1
π1
i j P1 j i +Yii +Y T

ii +(1+ημ)Q+μX1
1i i

if j �= i
AT
1i P1 j i + P1 j i A1i + π0

j i (P1i i − P1 j i ) + Y ji + Y T
ji + (1 + ημ)Q + μX1

1 j i

Φ22 =
⎧
⎨

⎩

N∑

j=1
πi j P2i j +

N∑

j=1
π1
i j P2 j i + μX3

1i i , if j = i

π0
j i (P2i i − P2 j i ) + μX3

1 j i , if j �= i

Φ13 = P1 j i A2i − Y ji + T T
ji + μX1

2 j i , Φ33 = −Tji − T T
ji − (1 − hi )Q + μX3 j i ,

η = max
i∈S

{|πi i |}, Vji = BT
3 j P2 j i , Uji = AT

3 j P2 j i ,

then the systems (2.10) are exponentially stable in the mean-square sense.

Proof Consider the nominal time-delayed jump linear system �0 without distur-
bance:

�0 :

⎧
⎪⎨

⎪⎩

ξ̇ (t) = Â1(rot , rt )ξ(t) + Â2(rt )I0ξ(t − τrt (t)),

z(t) = [C(rt ) + ΔC(rt , t)]I0ξ(t),

I0ξ(s) = f (s), rs = r0, s ∈ [−2μ, 0]
(2.17)

where

Â1(r
o
t , rt ) =

[
A1(rt ) B1(rt )K (rot )

B3(rot )C(rt ) A3(rot )

]

∈ R
2n×2n,

Â2(rt ) =
[
A2(rt )
0

]

∈ R
2n×n .

It isworth pointing out that {(ξ(t), rot , rt ), t ≥ 0} is non-Markovian due to the time
delay τrt (t). However, if we define a process {(ξt , rot , rt ), t ≥ 0)} that taking values in
C0, where ξt = {ξ(θ + t) | −2μ ≤ θ ≤ 0}, C0 = ⋃

i, j∈S C [−2μ, 0] × {i, j}, and
C [−2μ, 0] denotes the space of continuous functions on interval [−2μ, 0], then
we can show that {(ξt , rot , rt ), t ≥ 0)} is a strong Markov process with state space
C0 [27].
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Consider the following LKFs candidate:

V (ξt , r
o
t , rt , t) = V1 + V2 + V3 + V4, (2.18)

where

V1 = ξ T (t)P(rot , rt )ξ(t) = xT (t)P1(r
o
t , rt )x(t) + x̂ T (t)P2(r

o
t , rt )̂x(t),

V2 =
∫ t

t−τrt (t)
xT (s)Qx(s)ds

V3 = η

∫ 0

−μ

∫ t

t+θ

xT (s)Qx(s)dsdθ

V4 =
∫ 0

−μ

∫ t

t+θ

ẋ T (s)Z ẋ(s)dsdθ.

For both cases of rot = rt = i and rot = j, rt = i, j �= i , we obtain their respective
results according to the definition of the infinitesimal generator L in Lemma 2.3.

Case I. rot = rt = i
We can find that

LV1 = ξ T (t)

⎡

⎣ ÂT
1i i Pii + Pii Â1i i +

N∑

j=1

πi j Pi j +
N∑

j=1

π1
i j Pji

⎤

⎦ ξ(t)

+ ξ T (t)Pii Â2i x(t − τi (t)) + xT (t − τi (t)) Â
T
2i Piiξ(t),

LV2 = ξ T (t)I T0 QI0ξ(t) − (1 − τ̇i (t))x
T (t − τi (t))Qx(t − τi (t))

+
N∑

j=1

πi j

∫ t

t−τ j (t)
xT (s)Qx(s)ds

≤ ξ T (t)I T0 QI0ξ(t) − (1 − hi )x
T (t − τi (t))Qx(t − τi (t))

+
N∑

j=1

πi j

∫ t

t−τ j (t)
xT (s)Qx(s)ds,

LV3 = ημξ T (t)I T0 QI0ξ(t) − η

∫ t

t−μ

xT (s)Qx(s)ds,

LV4 = μξ̇ T (t)I T0 Z I0ξ̇ (t) −
∫ t

t−μ

ẋ T (s)Z ẋ(s)ds

≤ μξ̇ T (t)I T0 Z I0ξ̇ (t) −
∫ t

t−τi (t)
ẋ T (s)Z ẋ(s)ds.
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Combining (1.4) and (2.2), we obtain

N∑

j=1

πi j

∫ t

t−τ j (t)
xT (s)Qx(s)ds ≤

N∑

j=1, j �=i

πi j

∫ t

t−μ

xT (s)Qx(s)ds

= −πi i

∫ t

t−μ

xT (s)Qx(s)ds ≤ η

∫ t

t−μ

xT (s)Qx(s)ds. (2.19)

To overcome the conservativeness in selecting the optimal weighting matrices
between the terms in the Newton-Leibniz formula, the following condition is pre-
sented [24]:

2
[
xT (t)Y + xT (t − d(t))T

]
[

x(t) −
∫ t

t−d(t)
ẋ(s)ds − x(t − d(t))

]

= 0,

where the free weighting matrices Y and T indicate the relationship between the
terms in the above formula, and they can easily be selected by means of linear matrix
inequalities.

The following conditions are also employed to complete the proof.

μζ T (t)X (rot , rt )ζ(t) −
∫ t

t−τpmj,t (t)
ζ T (t)X (rot , rt )ζ(t)ds ≥ 0, (2.20)

2
[
ξ T (t)I T0 Y (rot , rt ) + xT (t − τrt (t))T (rot , rt )

] ×
[
I0ξ(t) −

∫ t

t−τrt (t)
ẋ(s)ds − x(t − τrt (t))

]
= 0, (2.21)

where ζ T (t) = [ξ T (t) xT (t − τrt (t))], and X (rot , rt ) are defined in Theorem 2.1.
We have

LV (ξt , i, i, t) ≤ ξ T (t)

⎡

⎣ ÂT
1i i Pii + Pii Â1i i +

N∑

j=1

πi j Pi j +
N∑

j=1

π1
i j Pji

⎤

⎦ ξ(t)

+ ξ T (t)Pii Â2i x(t − τi (t)) + xT (t − τi (t)) Â
T
2i Piiξ(t)

+ (1 + ημ)ξ T (t)I T0 QI0ξ(t) − (1 − hi )x
T (t − τi (t))Qx(t − τi (t))

+ μξ̇ T (t)I T0 Z I0ξ̇ (t) −
∫ t

t−τi (t)
ẋ T (s)Z ẋ(s)ds

+ 2
[
ξ T (t)I T0 Y (rot , rt ) + xT (t − τrt (t))T (rot , rt )

] [
I0ξ(t)
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−
∫ t

t−τrt (t)
ẋ(s)ds − x(t − τrt (t))

]
+ μζ T (t)X (rot , rt )ζ(t)

−
∫ t

t−τrt (t)
ζ T (t)X (rot , rt )ζ(t)ds

= ζ T (t)�i iζ(t) −
∫ t

t−τi (t)
χT (t, s)Γi iχ(t, s)ds, (2.22)

where

χT (t, s) = [ξ T (t) xT (t − τi (t)) ẋ T (s)],
�i i =

[
Φ̂11 + μ ÂT

1i i I
T
0 Z I0 Â1i i Φ̂12 + μ ÂT

1i i I
T
0 Z I0 Â2i

Φ̂T
12 + μ ÂT

2i I
T
0 Z I0 Â1i i Φ̂22 + ÂT

2i I
T
0 Z I0 Â2i

]

,

Φ̂11 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ÂT
1i i Pii + Pii Â1i i +

N∑

j=1
πi j Pi j +

N∑

j=1
π1
i j Pji + I T0 Yii I0

+I0Y T
ii I

T
0 + (1 + ημ)I T0 QI0 + μX1i i , (if j = i)

ÂT
1 j i Pji + Pji Â1 j i + q0

j i (Pii − Pji ) + I T0 Y ji I0 + I0Y T
ji I

T
0

+(1 + ημ)I T0 QI0 + μX1 j i , (if j �= i)

Φ̂12 = Pji Â2i − I T0 Y ji + I T0 T
T
ji + μX2 j i , (2.23)

Φ̂22 = −Tji − T T
ji − (1 − hi )Q + μX3 j i ,

η = max
i∈S

{|πi i |}.

If �i i < 0, Γi i ≥ 0, then for each i ∈ S and any scalar β > 0, we obtain

L[eβt V (ξt , i, i, t)] ≤ −α1e
βt‖ξ(t)‖2 + βeβt V (ξt , i, i, t), ∀ i ∈ S , β > 0, (2.24)

where α1 = min
i∈S

{λmin(−�i i )}.
Similar to [27], we can verify that

V (ξt , i, i, t) ≤ λmax (Pii )‖ξ(t)‖2 + λmax (Q)

∫ t

t−τi (t)
‖x(s)‖2ds

+ ηλmax(Q)

∫ 0

−μ

∫ t

t+θ

‖x(s)‖2dsdθ + λmax (Z)

∫ 0

−μ

∫ t

t+θ

‖ẋ(s)‖2dsdθ

≤ λmax (Pii )‖ξ(t)‖2 + (ημ + 1)λmax (Q)

∫ t

t−μ

‖x(s)‖2ds

+ μλmax (Z)

∫ t

t−μ

‖ẋ(s)‖2ds.
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Noticing that in nominal system �0:

ξ̇ (t) = Â1i iξ(t) + Â2i I0ξ(t − τrt (t))

and letting α2 = max
i∈S

{
2‖ Â1i i‖2

}
, α3 = max

i∈S

{
2‖ Â2i‖2

}
, it yields

‖ξ̇ (t)‖2 ≤ α2‖ξ(t)‖2 + α3‖x(t − τrt (t))‖2.

This, together with (2.24), gives

L[eβt V (ξt , i, i, t)] ≤ (−α1 + α4β)eβt‖ξ(t)‖2

+ α3μλmax (Z)βeβt
∫ t

t−μ

‖x(s − τrs (s))‖2ds

+ βeβt
[
(μη + 1)λmax (Q) + α2μλmax (Z)

]
∫ t

t−μ

‖x(s)‖2ds,
(2.25)

where α4 = max
i∈S

{λmax(Pii )}.
UsingDynkin’s formula [18], for any T > 0,β > 0, and each rot = rt = i, i ∈ S ,

it follows that

E
{
eβT V (ξT , rot , rt , T )

∣
∣ξ0, r

o
0 , r0, 0

}

= V (ξ0, r
o
0 , r0, 0) + E

{
∫ T

0
L[eβsV (ξs, i, i, s)]ds

∣
∣ξ0, r

o
0 , r0, 0

}
.

Since the initial time values x(0) = x0, r0 and ro0 are deterministic, ξ0 is also
deterministic. Substituting (2.25) into above gives

E
{
eβT V (ξT , rot , rt , T )

}

≤ V (ξ0, r
o
0 , p0, 0) + E

{

(−α1 + α4β)

∫ T

0
eβt‖ξ(t)‖2dt

+ β
[
(μη + 1)λmax (Q) + α2μλmax (Z)

]
∫ T

0
eβt

∫ t

t−μ

‖x(s)‖2dsdt

+ α3μλmax (Z)β

∫ T

0
eβt

∫ t

t−μ

‖x(s − τrs (s))‖2dsdt
}

. (2.26)
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Let θ = t − τi (t). The following inequalities

⎧
⎪⎨

⎪⎩

τ̇i (t) = dτi (t)

dt
≤ hi < 1,

dt ≤ 1

1 − hi
dθ,

(2.27)

yields

∫ T

0
eβt

∫ t

t−μ

‖x(s)‖2dsdt

≤
∫ 0

−μ

μeβ(s+μ)‖x(s)‖2ds +
∫ T−μ

0
μeβ(s+μ)‖x(s)‖2ds +

∫ T

T−μ

μeβ(s+μ)‖x(s)‖2ds

= μ

∫ T

−μ

eβ(t+μ)‖x(t)‖2dt ≤ μ

∫ T

−μ

eβ(t+μ)‖ξ(t)‖2dt, (2.28)

∫ T

0
eβt

∫ t

t−μ

‖x(s − τrs (s))‖2dsdt

≤
∫ 0

−μ

μeβ(s+μ)‖x(s − τrs (s))‖2ds +
∫ T−μ

0
μeβ(s+μ)‖x(s − τrs (s))‖2ds

+
∫ T

T−μ

μeβ(s+μ)‖x(s − τrs (s))‖2ds

= μ

∫ T

−μ

eβ(t+μ)‖x(t − τrt (t))‖2dt ≤ 1

1 − hi
μ

∫ T

−2μ
eβ(θ+2μ)‖x(θ)‖2dθ

= 1

1 − hi
μ

∫ T

−2μ
eβ(t+2μ)‖x(t)‖2dt ≤ 1

1 − hi
μ

∫ T

−2μ
eβ(t+2μ)‖ξ(t)‖2dt. (2.29)

Substituting (2.28) and (2.29) into (2.26) leads to

E
{
eβT V (ξT , rot , rt , T )

}

≤ V (ξ0, r
o
0 , p0, 0) + E

{

(−α1 + α4β)

∫ T

0
eβt‖ξ(t)‖2dt + β

[
(μη + 1)λmax (Q)

+ α2μλmax (Z)
]
μ

∫ T

−μ

eβ(t+μ)‖ξ(t)‖2dt + α3μ
2λmax (Z)β

1 − hi

∫ T

−2μ
eβ(t+2μ)‖ξ(t)‖2dt

}

≤ V (ξ0, r
o
0 , r0, 0) + E

{

α5βe
βμ

∫ 0

−μ

‖ξ(t)‖2dt + α6βe
2βμ

∫ 0

−2μ
‖ξ(t)‖2dt

+ [−α1 + α4β + α5βe
βμ + α6βe

2βμ]
∫ T

0
eβt‖ξ(t)‖2dt

}

,

where α5 = [
(μη + 1)λmax (Q) + α2μλmax (Z)

]
μ, and α6 = α3μ

2λmax (Z)

1−hi
.
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28 2 Robust Stochastic Stability

Choose β > 0 such that

−α1 + α4β + α5βe
βμ + α6βe

2βμ ≤ 0.

Then, we have

E
{
eβT V (ξT , rot , rt )

} ≤ c, (2.30)

where c = V (ξ0, ro0 , p0, 0) + E
{
α5βeβμ

∫ 0
−μ

‖ξ(t)‖2dt + α6βe2βμ
∫ 0
−2μ ‖ξ(t)‖2dt

}
.

Hence, the LMIs �i i < 0, Γi i ≥ 0 guarantee that the nominal time-delayed jump
linear system �0 is exponentially stable in mean square, for rot = rt = i,∀i ∈ S .

Case II. rot = j, rt = i , and j �= i
Following similar lines as in the proof of Case I, we obtain

LV (xt , j, i, t)

≤ ξ T (t)
[
ÂT
1 j i Pji + Pji Â1 j i + q0

j i (Pii − Pji )
]
ξ(t)

+ ξ T (t)Pji Â2i x(t − τi (t)) + xT (t − τi (t)) Â
T
2i Pjiξ(t)

+ (1 + ημ)ξ T (t)I T0 QI0ξ(t) − (1 − hi )x
T (t − τi (t))Qx(t − τi (t))

+ μξ̇ T (t)I T0 Z I0ξ̇ (t) −
∫ t

t−τi (t)
ẋ T (s)Z ẋ(s)ds

≤ ξ T (t)� j iξ(t) −
∫ t

t−τi (t)
χT (t, s)Γ j iχ(t, s)ds, (2.31)

where

� j i =
[

Φ̂11 + μ ÂT
1 j i I

T
0 Z I0 Â1 j i Φ̂12 + μ ÂT

1 j i I
T
0 Z I0 Â2i

Φ̂T
12 + μ ÂT

2i I
T
0 Z I0 Â1 j i Φ̂22 + ÂT

2i I
T
0 Z I0 Â2i

]

,

and the LMIs� j i < 0, Γ j i ≥ 0 guarantee that the nominal time-delayed jump linear
system �0 is exponentially stable in mean square, for rot = j, rt = i, and j �= i ,
∀ j, i ∈ S.

Applying the Schur complement, one sees that for any i, j ∈ S, � j i < 0 implies

⎡

⎣
Φ̂11 Φ̂12 μ ÂT

1 j i I
T
0 Z

Φ̂T
12 Φ̂22 μ ÂT

2i I
T
0 Z

μZ I0 Â1 j i μZ I0 Â2i −μZ

⎤

⎦ < 0, (2.32)

which is equivalent to the following condition:
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⎡

⎢
⎢
⎣

Φ11 CT
i B

T
3 j P2 j i + μX2

1i i Φ13 μAT
1i Z

P2 j i B3 jCi + μX2T
1i i AT

3 j P2 j i + P2 j i A3 j + Φ22 μX2
2i i 0

ΦT
13 μX2T

2i i Φ33 μAT
2i Z

μZ A1i 0 μZ A2i −μZ

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

P1 j i B1i

0
0

μZ B1i

⎤

⎥
⎥
⎦ I

[
0 K j 0 0

] +

⎡

⎢
⎢
⎣

0
KT

j

0
0

⎤

⎥
⎥
⎦ I

[
BT
1i P1 j i 0 0 μBT

1i Z
]

< 0. (2.33)

By Lemma 2.2, a sufficient condition guaranteeing (2.33) is that there exists a
positive number ρ j i > 0 such that

ρ j i

⎡

⎢
⎢
⎣

Φ11 CT
i B

T
3 j P2 j i + μX2

1i i Φ13 μAT
1i Z

P2 j i B3 jCi + μX2T
1i i AT

3 j P2 j i + P2 j i A3 j + Φ22 μX2
2i i 0

ΦT
13 μX2T

2i i Φ33 μAT
2i Z

μZ A1i 0 μZ A2i −μZ

⎤

⎥
⎥
⎦

+ρ2
j i

⎡

⎢
⎢
⎣

P1 j i B1i

0
0

μZ B1i

⎤

⎥
⎥
⎦ I

[
BT
1i P1 j i 0 0 μBT

1i Z
] +

⎡

⎢
⎢
⎣

0
KT

i
0
0

⎤

⎥
⎥
⎦ I

[
0 Ki 0 0

]
< 0. (2.34)

Replacing ρ j i P1 j i , ρ j i P2 j i , ρ j i Q, ρ j i Z , ρ j i X ji , ρ j i Y ji and ρ j i Tji with P1 j i , P2 j i ,
Q, Z , X ji , Y ji and Tji , respectively, and applying the Schur complement shows that
(2.34) is equivalent to

W j i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11 CT
i Vji + μX2

1i i Φ13 μAT
1i Z P1 j i B1i 0

V T
ji Ci + μX2T

1i i U ji +UT
ji + Φ22 μX2

2i i 0 0 KT
j

ΦT
13 μX2T

2i i Φ33 μAT
2i Z 0 0

μZ A1i 0 μZ A2i −μZ μZ B1i 0
BT
1i P1 j i 0 0 μBT

1i Z −I 0
0 K j 0 0 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(2.35)

with j, i ∈ S . Hence, the LMIs (2.16) (2.35) guarantee that the nominal time-
delayed jump linear system �0 is exponentially stable in mean square for rot =
j, rt = i, ∀ j, i ∈ S.

Then, for the uncertain time-delayed jump linear system (2.10) without dis-
turbance, replacing A1i , A2i , B1i and K j in (2.35) with A1i + H1i Fi (t)E1i , A2i +
H1i Fi (t)E2i , B1i + H1i Fi (t)E3i and K j + αiφi (t)K j , we can obtain that (2.35) for
system (2.10) is equivalent to the following condition:
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W j i +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1 j i H1i

0
0

μZH1i

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fi (t)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
1i
0
ET
2i
0
ET
3i
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
1i
0
ET
2i
0
ET
3i
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fi (t)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pji H1i

0
0

μZH1i

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
V T
ji H2i

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fi (t)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
4i
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
4i
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fi (t)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
V T
ji H2i

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
αi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φi (t)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
KT

j

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
KT

j

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

φT
i (t)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
αi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

< 0. (2.36)

ByLemma2.2, a sufficient conditionguaranteeing (2.36) is that there exist positive
numbers ρ1 j i > 0, ρ2 j i > 0, ρ3 j i > 0 such that

W j i + ρ−1
3 j i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1 j i H1i

0
0

μZH1i

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P1 j i H1i

0
0

μZH1i

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+ ρ3 j i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
1i
0
ET
2i
0
ET
3i
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
1i
0
ET
2i
0
ET
3i
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+ ρ−1
2 j i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
V T
ji H2i

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
V T
ji H2i

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+ ρ2 j i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
4i
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ET
4i
0
0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+ ρ1 j i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
αi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
αi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

+ ρ−1
1 j i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
KT

j

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
KT

j

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

< 0. (2.37)
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With the Schur complement one can show that (2.15) is equivalent to (2.37) for
all rot = j, rt = i, ∀ j, i ∈ S . This completes the proof.

Remark 2.3 It can be seen that the condition in (2.32) is nonlinear in the design
parameters A3 j , B3 j , K j and Pji . In non-delayed systems, these types of nonlinear-
ities have been eliminated by some appropriate change of control variables with the
general form of Pji as follows [13, 21]:

Pji =
[
P1 j i P2 j i
PT
2 j i P3 j i

]

, ∀ j, i ∈ S . (2.38)

To deal with the output feedback control problem for time-delay systems, there
are always some parameters coupled with their inverse which is required to be fixed
a priori, see, e.g., [10, 26]. In this chapter, if we partition Pji as (2.38) and use the
linearizing change of variable approach as in [26] for condition (2.32), the design
parameters Y ji , X1

1 j i ,Y
−1
j i , X1−1

1 j i will occur in the same inequality.
Then, if we were to transfer the control design problem into the framework of

LMI, we have to fix these parameters a priori, which makes the obtaining of the
optimal relationships between the terms in the Newton-Leibniz formula (2.20) and
(2.21) almost impossible.

To obtain an easier design technique, we choose Pji to be diagonal block matrices

Pji =
[
P1 j i 0
0 P2 j i

]

, ∀ j, i ∈ S .

It is reasonable to choose Lyapunov parameters P1 j i for plant states x(t) and P2 j i
for control systems states x̂(t), respectively.We can obtain the optimal freeweighting
matrices by solving the corresponding linear matrix inequalities without the need to
fix any design parameters, leading to less conservative results.

2.4 Robust H∞ Disturbance Attenuation

In this section, we consider robust H∞ disturbance attenuation for the time-delayed
uncertain jump linear systems (2.10).

Theorem 2.2 The time-delayed uncertain jump linear systems (2.10) is stochas-
tically stable with γ -disturbance H∞ attenuation (2.11), and the output feedback
control law (2.8) is robust if there exist symmetric positive-definite matrices P1 j i ,
P2 j i , Q, Z, symmetric positive semi-definite matrices X ji ≥ 0, constants ρ1 j i > 0,
ρ2 j i > 0, ρ3 j i > 0 and appropriately dimensioned matrices K j , Y ji , Tji , N ji such
that
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1 μAT
1i Ẑ P̂1 j i B1i+ρ3 j i ET

1i E3i 0 CT
i P̂1 j i H1i 0 0

L2 0 0 KT
j 0 0 V T

ji H2i K T
j

L3 μAT
2i Ẑ ρ3 j i ET

2i E3i 0 0 0 0 0

L4 μBT
2i Ẑ 0 0 0 0 0 0

L5 −μẐ μẐ B1i 0 0 μẐ H1i 0 0
L6 μBT

1i Ẑ −I+ρ3 j i ET
3i E3i 0 0 0 0 0

L7 0 0 −I+ρ1 j iα
2
i I 0 0 0 0

L8 0 0 0 −ρ4 j i I 0 H2i 0

L9 μHT
1i Ẑ 0 0 0 −ρ3 j i I 0 0

L10 0 0 0 HT
2i 0 −ρ2 j i I 0

L11 0 0 0 0 0 0 −ρ1 j i I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (2.39)

Γ j i =

⎡

⎢
⎢
⎣

X̂11 j i X̂12 j i X̂13 j i I T0 Ŷ ji

X̂ T
12 j i X̂22 j i X̂23 j i T̂ j i

X̂ T
13 j i X̂

T
23 j i X̂33 j i N̂ j i

Ŷ T
ji I0 T̂ T

ji N̂ T
ji Ẑ

⎤

⎥
⎥
⎦ ≥ 0, ∀i, j ∈ S , (2.40)

where

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ11+ρ3 j i ET
1i E1i+ρ2 j i ET

4i E4i CT
i Vji+μX̂2

11 j i Ψ13+ρ3 j i ET
1i E2i Ψ14

μX̂2T
11 j i+V T

ji Ci Ui+UT
i +Ψ22 μX̂2

12 j i μX̂2
13 j i

Ψ T
13+ρ3 j i ET

2i E1i μX̂2T
12 j i Ψ33+ρ3 j i ET

2i E2i Ψ34

Ψ T
14 μX̂2T

13 j i Ψ T
34 Ψ44−γ 2 I

μẐ A1i 0 μẐ A2i μẐ B2i

BT
1i P̂1 j i+ρ3 j i ET

3i E1i 0 ρ3 j i ET
3i E2i 0

0 K j 0 0
Ci 0 0 0

HT
1i P̂1 j i 0 0 0
0 HT

2i Vji 0 0
0 K j 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

X ji =
⎡

⎢
⎣

X11 j i X12 j i X13 j i

X
T
12 j i X22 j i X23 j i

X
T
13 j i X

T
23 j i X33 j i

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X
1
11 j i X

2
11 j i X

1
12 j i X

1
13 j i

X
2T

11 j i X
3
11 j i X

2
12 j i X

2
13 j i

X
1T

12 j i X
2T

12 j i X22 j i X23 j i

X
1T

13 j i X
2T

13 j i X
T
23 j i X33 j i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

with

ybzhao@zjut.edu.cn
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Ψ11 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(if j = i)

AT
1i P̂1i i + P̂1i i A1i +Ŷii +Ŷ T

ii +(1+ημ)Q̂+μX̂1
11i i +

N∑

j=1
πi j P̂1i j +

N∑

j=1
π1
i j P̂1 j i ,

(if j �= i)

AT
1i P̂1 j i + P̂1 j i A1i + Ŷ ji + Ŷ T

ji + (1 + ημ)Q̂ + μX̂1
11 j i + π0

j i (P̂1i i − P̂1 j i ),

Ψ22 =

⎧
⎪⎨

⎪⎩

N∑

j=1
πi j P̂2i j +

N∑

j=1
π1
i j P̂2 j i + μX̂3

11i i , if j = i

π0
j i (P̂2i i − P̂2 j i ) + μX̂3

11 j i , if j �= i

Ψ13 = P̂1 j i A2i − Ŷ ji + T̂ T
ji + μX̂1

12 j i , Ψ14 = P̂1 j i B2i + N̂ T
ji + μX̂1

13 j i ,

Ψ33 = −T̂ ji − T̂ T
ji − (1 − hi )Q̂ + μX̂22 j i , Ψ34 = −N̂ T

ji + μX̂23 j i ,

Ψ44 = μX̂33 j i , η = max
i∈S

{|πi i |}, Vji = BT
3 j P̂2 j i , Uji = AT

3 j P̂2 j i ,
[
P̂1 j i P̂2 j i Q̂ Ẑ Ŷ ji T̂ j i N̂ ji

] = ρ−1
4 j i

[
P1 j i P2 j i Q Z Y ji Tji N ji

]
,

⎡

⎢
⎢
⎢
⎣

X̂1
11 j i X̂

2
11 j i X̂

1
12 j i X̂

1
13 j i

X̂2T
11 j i X̂

3
11 j i X̂

2
12 j i X̂

2
13 j i

X̂1T
12 j i X̂

2T
12 j i X̂22 j i X̂23 j i

X̂1T
13 j i X̂

2T
13 j i X̂

T
23 j i X̂33 j i

⎤

⎥
⎥
⎥
⎦

= ρ−1
4 j i

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X
1
11 j i X

2
11 j i X

1
12 j i X

1
13 j i

X
2T

11 j i X
3
11 j i X

2
12 j i X

2
13 j i

X
1T

12 j i X
2T

12 j i X22 j i X23 j i

X
1T

13 j i X
2T

13 j i X
T
23 j i X33 j i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Proof For the nominal time-delayed jump linear system �1 with disturbance:

�1 :

⎧
⎪⎨

⎪⎩

ξ̇ (t) = Â1(rot , rt )ξ(t) + Â2(rt )I0ξ(t − τrt (t)) + B̂2(rt )w(t),

z(t) = [C(rt ) + ΔC(rt , t)]I0ξ(t),

I0ξ(s) = f (s), rs = r0, s ∈ [−μ, 0],
(2.41)

where

B̂2(rt ) =
[
B2(rt )
0

]

.

Let ζ
T
(t) = [ξ T (t) xT (t − τi (t)) wT (t)]. Take the Lyapunov function candidate

as (2.18), and employ the following conditions

μζ
T
(t)X(rot , rt )ζ (t) −

∫ t

t−τrt (t)
ζ
T
(t)X(rot , rt )ζ (t)ds ≥ 0,

2
[
ξ T (t)I T0 Y (rot , rt ) + xT (t − τrt (t))T (rot , rt ) + wT (t)N (rot , rt )

]

×
[

I0ξ(t) −
∫ t

t−τrt (t)
ẋ(s)ds − x(t − τrt (t))

]

= 0, (2.42)
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we can then obtain

LV (xt , j, i, t) ≤ ζ
T
(t)� j iζ (t) −

∫ t

t−τi (t)
χT (t, s)Γ j iχ(t, s)ds, (2.43)

where

� j i=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ψ 11 + μ ÂT
1 j i I

T
0 Z I0 Â1 j i Ψ 12 + μ ÂT

1 j i I
T
0 Z I0 Â2i Ψ 13 + ÂT

1 j i I
T
0 Z I0 B̂2i

Ψ
T
12 + μ ÂT

2i I
T
0 Z I0 Â1 j i Ψ 22 + μ ÂT

2i I
T
0 Z I0 Â2i Ψ 23 + μ ÂT

2i I
T
0 Z I0 B̂2i

Ψ
T
13 + μB̂T

2i I
T
0 Z I0 Â1 j i Ψ

T
23 + μB̂T

2i I
T
0 Z I0 Â2i Ψ 33 + μB̂T

2i I
T
0 Z I0 B̂2i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Ψ 11 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ÂT
1i i Pii + Pii Â1i i + I T0 Yii I0 + I0Y T

ii I
T
0 + (1 + ημ)I T0 QI0

+μX11i i +
N∑

j=1
πi j Pi j +

N∑

j=1
π1
i j Pji , if j = i

ÂT
1 j i Pji + Pji Â1 j i + I T0 Y ji I0 + I0Y T

ji I
T
0 + (1 + ημ)I T0 QI0

+μX11 j i + q0
j i (Pii − Pji ), if j �= i

Ψ 12 = Pji Â2i − I T0 Y ji + I T0 T
T
ji + μX12 j i ,

Ψ 22 = −Tji − T T
ji − (1 − hi )Q + μX22 j i ,

Ψ 13 = Pji B̂2i + I T0 NT
ji + μX13 j i , Ψ 23 = −NT

ji + μX23 j i , Ψ 33 = X33 j i ,

η = max
i∈S

{|πi i |}, χT (t, s) = [ξ T (t) xT (t − τi (t)) wT (t) ẋ T (s)].

Using Dynkin’s formula again [18], we obtain

E

{∫ T

0
LV (xs, r

o
s , rs, s)ds

}

= E{V (xT , rot , rt , T )} − E{V (x0, r
o
0 , r0, 0)}.

Under the zero initial condition (x(0) = 0), we have

E{V (x0, r
o
0 , r0, 0)} = 0.

Thus, for any w(t) ∈ L2[0 ∞), one sees that

J = E

{∫ T

0

[

zT (t)z(t) − γ 2wT (t)w(t) + LV (xt , r
o
t , rt , t)

]

dt

}

− E{V (xT , rot , rt , T )}

≤ E

{∫ T

0

[

zT (t)z(t) − γ 2wT (t)w(t) + LV (xt , r
o
t , rt , t)

]

dt

}

. (2.44)
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Substituting (2.43) into the above inequality gives

J ≤ E
{ ∫ T

0

[
ζ
T
(t)

(
� j i +

⎡

⎣
I T0 C

T
i Ci I0 0 0
0 0 0
0 0 −γ 2 I

⎤

⎦
)
ζ (t)

−
∫ t

t−τi (t)
χT (t, s)Γ j iχ(t, s)ds

]
dt

}
.

By Lemma 2.2 and the Schur complement we obtain (2.40), and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ11 + ρ−1
4 j iC

T
i Ci CT

i B
T
3 j P̂2 j i + μX̂2

11 j i Ψ13 Ψ14

P̂2 j i B3 jCi + μX̂2T
11 j i AT

3 j P̂2 j i + P̂2 j i A3 j + Ψ22 μX̂2
12 j i μX̂2

13 j i

Ψ T
13 μX̂2T

12 j i Ψ33 Ψ34

Ψ T
14 μX̂2T

13 j i Ψ T
34 Ψ44 − γ 2 I

μẐ A1i 0 μẐ A2i μẐ B2i

BT
1i P̂1 j i 0 0 0
0 K j 0 0

μAT
1i Ẑ P̂1 j i B1i 0
0 0 KT

j

μAT
2i Ẑ 0 0

μBT
2i Ẑ 0 0

−μẐ Ẑ B1i 0
μBT

1i Ẑ −I 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (2.45)

guarantee J < 0 for any w(t) �= 0 (and w(t) ∈ L2[0,∞)), which also guarantee
γ -disturbance H∞ attenuation (2.11) of the closed-loop system �1 from w(t) to
z(t).

Then, replacing A1i , A2i , B1i ,Ci and K j in (2.45) with A1i + H1i Fi (t)E1i , A2i +
H1i Fi (t)E2i , B1i + H1i Fi (t)E3i , Ci + H2i Fi (t)E4i and K j + αiφi (t)K j and using
the similar proof of Theorem 2.1, we can easily verify that the control u(t) =
K (rot )x(t) guarantees γ -disturbance H∞ attenuation (2.11) of the closed-loop sys-
tem (2.10) from w(t) to z(t), if the coupled linear matrix inequalities (2.39) and
(2.40) are satisfied. This completes the proof.

In the case that the jumping parameter process can be directly and precisely
measured; that is, rt = rot , ∀ t ∈ [0, ∞), the closed-loop system (2.10) is specialized
as

⎧
⎪⎨

⎪⎩

ξ̇ (t) = Ã1(rt , t)ξ(t) + Ã2(rt )I0ξ(t − τrt (t)) + B̃2(rt )w(t),

z(t) = [C(rt ) + ΔC(rt , t)]I0ξ(t),

I0ξ(s) = f (s), rs = r0, s ∈ [−2μ, 0],
(2.46)
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where

Ã1i =
[

A1i + ΔA1i (t)
(
B1i + ΔB1i (t)

)
(I + αiφi (t)) Ki

B3i
(
Ci + ΔCi (t)

)
A3i

]

∈ R
2n×2n,

Ã2i =
[
A2i + ΔA2i (t)

0

]

∈R
2n×n, B̃2i =

[
B2i

0

]

∈R
2n×m2 , I0=[

I0
] ∈ R

n×2n

for each pt = i, ∀i ∈ S .
Then by Theorem 2.2, we have the following corollary.

Corollary 2.1 The time-delayed uncertain jump linear systems (2.10) is stochas-
tically stable with γ -disturbance H∞ attenuation (2.11), and the output feedback
control law (2.8) is robust if the jumping parameter process can be directly and
precisely measured, and there exist symmetric positive-definite matrices P1i , P2i ,
Q, Z, symmetric positive semi-definite matrices X̃i ≥ 0, constants ρ1i > 0, ρ2i > 0,
ρ3i > 0 and appropriately dimensioned matrices Ki , Yi , Ti , Ni such that

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L̃1 μAT
1i Ẑ P̂1i B1i+ρ3i ET

1i E3i 0 CT
i P̂1i H1i 0 0

L̃2 0 0 KT
i 0 0 V T

i H2i K T
i

L̃3 μAT
2i Ẑ ρ3i ET

2i E3i 0 0 0 0 0
L̃4 μBT

2i Ẑ 0 0 0 0 0 0
L̃5 −μẐ μẐ B1i 0 0 μẐ H1i 0 0
L̃6 μBT

1i Ẑ −I+ρ3i ET
3i E3i 0 0 0 0 0

L̃7 0 0 −I+ρ1iα
2
i I 0 0 0 0

L̃8 0 0 0 −ρ4i I 0 H2i 0
L̃9 μHT

1i Ẑ 0 0 0 −ρ3i I 0 0
L̃10 0 0 0 HT

2i 0 −ρ2i I 0
L̃11 0 0 0 0 0 0 −ρ1i I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (2.47)

Γ̃i =

⎡

⎢
⎢
⎣

X̂11i X̂12i X̂13i I T0 Ŷi
X̂ T
12i X̂22i X̂23i T̂i

X̂ T
13i X̂ T

23i X̂33i N̂i

Ŷ T
i I0 T̂ T

i N̂ T
i Ẑ

⎤

⎥
⎥
⎦ ≥ 0, ∀i ∈ S , (2.48)

where

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L̃1

L̃2

L̃3

L̃4

L̃5

L̃6

L̃7

L̃8

L̃9

L̃10

L̃11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ̃11+ρ3i ET
1i E1i+ρ2i ET

4i E4i CT
i Vi+μX̂2

11i Ψ̃13+ρ3i ET
1i E2i Ψ̃14

μX̂2T
11i+V T

i Ci Ui+UT
i +Ψ̃22 μX̂2

12i μX̂2
13i

Ψ̃ T
13+ρ3i ET

2i E1i μX̂2T
12i Ψ̃33+ρ3i ET

2i E2i Ψ̃34

Ψ̃ T
14 μX̂2T

13i Ψ̃ T
34 Ψ̃44−γ 2 I

μẐ A1i 0 μẐ A2i μẐ B2i

BT
1i P̂1i+ρ3i ET

3i E1i 0 ρ3i ET
3i E2i 0

0 Ki 0 0
Ci 0 0 0

HT
1i P̂1i 0 0 0
0 HT

2i Vi 0 0
0 Ki 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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X̃i =
⎡

⎣
X̃11i X̃12i X̃13i

X̃ T
12i X̃22i X̃23i

X̃ T
13i X̃

T
23i X̃33i

⎤

⎦ =

⎡

⎢
⎢
⎣

X̃1
11i X̃

2
11i X̃

1
12i X̃

1
13i

X̃2T
11i X̃

3
11i X̃

2
12i X̃

2
13i

X̃1T
12i X̃

2T
12i X̃22i X̃23i

X̃1T
13i X̃

2T
13i X̃

T
23i X̃33i

⎤

⎥
⎥
⎦ ,

Ψ̃11 = AT
1i P̂1i + P̂1i A1i + Ŷi + Ŷ T

i + (1 + ημ)Q̂ + μX̂1
11i +

N∑

j=1

πi j P̂1 j ,

Ψ̃22 =
N∑

j=1

πi j P̂2 j +μX̂3
11i , Ψ̃13= P̂1i A2i −Ŷi +T̂ T

i +μX̂1
12i , Ψ̃44 = μX̂33i ,

Ψ̃14= P̂1i B2i + N̂ T
i + μX̂1

13i , Ψ̃33 = −T̂i − T̂ T
i − (1 − hi )Q̂ + μX̂22i ,

Ψ̃34 = −N̂ T
i + μX̂23i , η = max

i∈S
{|πi i |}, Vi = BT

3i P̂2i , Ui = AT
3i P̂2i ,

[
P̂1i P̂2i Q̂ Ẑ Ŷi T̂i N̂i

] = ρ−1
4i [P1i P2i Q Z Yi Ti Ni ] ,

⎡

⎢
⎢
⎣

X̂1
11i X̂

2
11i X̂

1
12i X̂

1
13i

X̂2T
11i X̂

3
11i X̂

2
12i X̂

2
13i

X̂1T
12i X̂

2T
12i X̂22i X̂23i

X̂1T
13i X̂

2T
13i X̂

T
23i X̂33i

⎤

⎥
⎥
⎦ = ρ−1

4i

⎡

⎢
⎢
⎣

X̃1
11i X̃

2
11i X̃

1
12i X̃

1
13i

X̃2T
11i X̃

3
11i X̃

2
12i X̃

2
13i

X̃1T
12i X̃

2T
12i X̃22i X̃23i

X̃1T
13i X̃

2T
13i X̃

T
23i X̃33i

⎤

⎥
⎥
⎦ .

2.5 Numerical Simulation

Example 2.1 Consider a time-delayed uncertain jump linear system (2.10) in R
2

with two regimes rt ∈ S = {1, 2}. For Mode 1, the dynamics of the system are
described by

A11 =
[−9 −2

1 −6

]

, A21 =
[
2.5 −2
2 −1.6

]

, E11 =
[
2.5
1

]T

, E21 =
[
0.4
2

]T

,

E41 =
[

1
0.2

]T

, B11 =
[
0.3
2

]

, B21 =
[
1.5
2

]

,C1 =
[−2

1

]T

, H11 =
[−1

2

]

,

E31 = −1, H21 = 1, μ1 = 0.1, h1 = 1, α1 = 2.

For Mode 2, the dynamics of the system are described by

A12 =
[

0 −2
−3 1

]

, A22 =
[−2 3

1 −5

]

, E12 =
[−3

1

]T

, E22 =
[−0.1

1

]T

,

E42 =
[−1

2

]T

, B12 =
[−1

−1

]

, B22 =
[−1

1

]

,C2 =
[
0.6
−1

]T

, H12 =
[

1
−1

]

,

E32 = 0.3, H22 = 1, μ2 = 0.1, h2 = 0.4, α2 = 3.
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Let the noise attenuation level γ = 1.2, and

[πi j ]2×2 =
[−12 12

18 −18

]

, [π0
i j ]2×2 =

[−2 2
5 −5

]

, [π1
i j ]2×2 =

[−4 4
6 −6

]

.

Solving the LMIs in (2.39) and (2.40), we obtain

P̂111 =
[
0.645 0.230
0.230 0.553

]

, P̂112 =
[

0.302 −0.010
−0.010 0.119

]

,

P̂121 =
[
0.701 0.266
0.266 0.808

]

, P̂122 =
[
3.5454 1.127
1.127 1.604

]

,

P̂211 =
[
2.513 0.104
0.104 4.688

]

, P̂212 =
[

1.697 −0.124
−0.124 2.916

]

,

P̂221 =
[

1.910 −1.141
−1.141 5.488

]

, P̂222 =
[

3.291 −2.969
−2.969 12.955

]

,

T̂11 =
[
13.651 2.448
2.410 3.080

]

, T̂12 =
[
13.228 1.842
1.188 2.868

]

,

T̂21 =
[
12.375 2.034
2.012 2.940

]

, T̂22 =
[
12.829 1.838
1.741 2.872

]

,

Ŷ11 =
[−8.435 6.694

5.939 −9.778

]

, Ŷ12 =
[−13.236 −1.843

−1.168 −2.868

]

,

Ŷ21 =
[−13.028 −2.350

−3.585 −3.703

]

, Ŷ22 =
[−12.808 −1.838

−0.044 −2.816

]

,

U11 =
[−79.698 1.953

1.959 −78.229

]

,U12 =
[−160.118 −5.683

−5.807 −171.548

]

,

U21 =
[−44.515 −1.019

4.386 −43.598

]

,U22 =
[−120.141 −1.413

−1.525 −101.532

]

,

Q̂ =
[
0.0006 0.0002
0.0002 0.0034

]

, Ẑ =
[
1.197 0.176
0.176 0.276

]

, V11 =
[

1.459
−2.172

]T

,

V12 =
[−0.291

−1.407

]T

, V21 =
[

0.537
−1.846

]T

, V22 =
[

3.279
−11.917

]T

,

N̂11 =
[
2.323
1.086

]T

, N̂12 =
[−3.721

−0.122

]T

, N̂21 =
[
3.367
1.634

]T

,

N̂22 =
[−2.922

−0.099

]T

, K1 =
[
4.384
1.868

]T

, K2 =
[−5.203

0.494

]T

,
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ρ111 = 0.234, ρ112 = 0.108, ρ121 = 0.145, ρ122 = 0.094,

ρ211 = 0.567, ρ212 = 0.185, ρ221 = 0.259, ρ222 = 5.643,

ρ311 = 0.332, ρ312 = 0.086, ρ321 = 0.344, ρ322 = 0.976,

ρ411 = 9.452, ρ412 = 8.758, ρ421 = 6.488, ρ422 = 4.182,

Therefore, by Theorem 2.2, the corresponding parameters of a suitable robust
output feedback control law (2.8) can be chosen as

A311 =
[−31.745 1.476

1.126 −16.718

]

, A312 =
[−94.725 −7.757

−5.994 −59.161

]

,

A321 =
[−26.736 −2.797

−5.745 −8.525

]

, A322 =
[−46.141 9.496

10.683 −10.013

]

,

B311 =
[−0.601

−0.478

]

, B312 =
[

0.208
−0.491

]

, B321 =
[−0.091

−0.318

]

,

B322 =
[−0.209

−0.872

]

, K1 =
[−4.384

1.868

]T

, K2 =
[
5.203
0.494

]T

.

Example 2.2 Consider the robust stability of the uncertain system (1) with the fol-
lowing parameters:

A11 =
[
a11 4
0 −13

]

, A12 =
[−2.8 −1.1

0.4 −2

]

, A21 =
[−0.7 0.2

0 −0.1

]

,

A22 =
[

0.1 0.2
−0.2 −0.1

]

, B11 =
[
1.2 0
0 −2.1

]

, B12 =
[

0 1.1
−4.2 0

]

,

H11 =
[
1.4 0
0 0.7

]

, H12 =
[

0 0.1
−0.8 −1.1

]

, E11 =
[
1 0
0 0.1

]

,

E12 =
[
1 0
0 0.6

]

, E21 =
[
0.6 0.3
0 −1

]

, E22 =
[−0.2 0

1 0

]

,

E31 =
[
0.3 0
0.2 0.1

]

, E32 =
[−0.1 0

0 −0.2

]

, C1 =
[
1 0
0 1

]

,

C2 =
[
0 1
1 0

]

, H21 =
[
0 1
1 0

]

, H22 =
[
1 1
0 1

]

,

H31 =
[
0.1 0.4
0 1.4

]

, H32 =
[−1 0

0 1

]

, [πi j ]2×2 =
[−3 3

5 −5

]

.
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Table 2.1 The maximum allowed value of time delay (μ)

h 0 0.2 0.5 1.0

a11 = −2 E.K.Boukas(2002) 0.2453 0.1522 - -

Theorem 3.1 0.6225 0.5795 0.4930 0.3281

a11 = −8 E.K.Boukas(2002) 1.0061 0.9421 0.5834 -

Theorem 3.1 1.2954 1.0594 0.7242 0.3427

To compare with Theorem 9.18 in [5], Theorem 2.1 should be reduced to the
conditions that the jumping parameter process can be directly and preciselymeasured
and controller can be accurately implemented. Furthermore, we also assume that
h1 = h2 = h, and

ΔA2(rt , t) = H3(rt )F(rt , t)E2(rt ),

ΔC(rt , t) = H2(rt )F(rt , t)E1(rt ).

The corresponding results are similar to Corollary 2.1, and are omitted here. The
maximum allowed value of time delay for different h obtained from Theorem 2.1
are shown in Table2.1. For comparison, The table also lists the results obtained from
Theorem 9.18 in [5]. From the example, we can find that our results show much less
conservatism than those in [5], especially for the increasing of the value of h.

2.6 Summary

The problem of robust output feedback H∞ control for time-delayed uncertain jump
linear systems has been studied. We have presented sufficient conditions on the exis-
tence of output feedback control by the imperfect information rot , which guarantees
not only the robust exponential mean-square stability but also the γ -disturbance H∞
attenuation for the closed loop system for all admissible parameter uncertainties and
time delays. However, all of these results are established under conditions of the
prior knowledge of the upper bounds of the system uncertainties. A possible direc-
tion for future work is to obtain adaptive H∞ control laws with less knowledge of
those bounds.
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Chapter 3
System with Imprecise Jumping Parameters

This chapter investigates Markovian jump systems with imprecise jumping para-
meters. Two switching cases are considered. For asynchronous switching, a class of
hybrid stochastic retarded systems with an asynchronous switching controller is stud-
ied, where the controller design relies on the observed jumping parameters that are
however delayed and thus can not be measured in real-time precisely. For this case,
we assume that the delayed time interval, referred to as the “asynchronous switching
interval”, is Markovian. The sufficient conditions under which the system is either
stochastically asymptotic stable or input-to-state stable are obtained by applying
the extended Razumikhin-type theorem to the asynchronous switching interval. For
extended asynchronous switching, a class of switched stochastic nonlinear retarded
systems in the presence of both detection delay and false alarm is studied, which are
described by two independent and exponentially distributed stochastic processes,
and further simplified as Markovian. Also based on the Razumikhin-type theorem
incorporated with the average dwell time approach, the sufficient criteria for global
asymptotic stability in probability and stochastic input-to-state stability are obtained.

3.1 Introduction

For switched systems, mode-dependent controller has received more and more atten-
tion, which is believed to be less conservative. The mode-dependent controller design
for switched systems is often assumed to be strictly synchronized [5, 13, 14, 26, 27,
29, 30], which may not generally hold in reality due to unknown and unpredictable
issues such as time-delay, disturbance, component and interconnection failures, etc.
Specifically, in practical systems, time-delay often appears in switched systems either
in input control or in output measurements, due to the distance between the place
where control signal is generated and the place where control signal is applied to
the plant as well as significant communication distance between the sensor and the

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2018
Y. Kang et al., Stability Analysis of Markovian Jump Systems,
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44 3 System with Imprecise Jumping Parameters

controller. On the other hand, for the mode-dependent controller design, the switch-
ing information is necessary. However, due to the existence of environmental noises,
disturbances, and small modelling uncertainties, considerable time is needed in the
mode detection of the plant.

It thus presents a great challenge at the boundary of switched systems and time
delay systems, and the concept of asynchronous switching is proposed to deal with
this phenomenon. Roughly speaking, the so-called “asynchronous switching” is
caused by the detection delay of switching signal which results in the mismatched
period of designed controller in each subsystem. The subsystems may be unstable
between these mismatched periods. Furthermore, in reality, because of the uncer-
tainties mentioned above, false alarm (or detection error) is inevitable, which fails
existing results for asynchronous switching with only detection delays. So a class of
new asynchronous switching system with simultaneously considering the detection
delays and the false alarms is studied. To distinguish it from the conventional asyn-
chronous switching system, it is named the extended asynchronous switching sys-
tem. Compared to the conventional asynchronous switching, the developed extended
asynchronous switching can better reflect the actual situation in practical switched
system control.

For conventional asynchronous switching, considerable studies have been
reported, for example, state feedback stabilization [19], input-to-state stabilization
[21], and output feedback stabilization [12], the use of the average dwell time approach
[9, 17, 18, 24, 25], just to name a few. However, almost all the researches on asyn-
chronous switching systems are for deterministic switched systems while the asyn-
chronous randomly switched systems have received little attention, especially for
nonlinear systems. Two difficulties are introduced in the analysis of the systems sta-
bility because of the switching signal’s stochastic properties. One is that since the
switching signal is a stochastic process, the methods in deterministic switched sys-
tems, e.g., dwell time approach or average dwell time approach, are difficult to be
used directly; The other one is that the detected switching signal is still a stochastic
process. The relationship between the detected switching signal and the origin switch-
ing signal further increases the complexity of the problem. Recently, the asynchro-
nous issues of MJLSs have also been studied [4, 7, 22]. Among them, [22] and [7]
investigated the stability and stabilization problem for a class of discrete-time MJLSs
via time-delayed controller. In [4], by defining two Markov processes, the stability of
the continuous-time MJLSs with detection delays and false alarms in detected switch-
ing signal and discrete-time MJLSs with constant time delays or random communi-
cation delays in mode signal are developed. Surprisingly, the studies on the stability
analysis for asynchronous stochastic nonlinear systems with Markovian switching are
scarce.

For extended asynchronous switching system, it has shown in [3] that the non-zero
detection delay can make a closed-loop system unstable. Therefore, the existence of
false alarm will inevitably further decrease the control performance. Thus, the so-
called extended asynchronous switching justifies its importance. However, the cou-
pled relationship between the true switching signal and the random detection as well
as the the false alarm also increase the complexity and difficulty of stability analysis

ybzhao@zjut.edu.cn



3.1 Introduction 45

for such system. Moreover, to date switched stochastic nonlinear retarded systems
(SSNLRS) under extended asynchronous switching have received little attention. All
those motivate this chapter’s study.

This chapter is organized as follows. In Sect. 3.2, based on a class of stochastic
nonlinear systems, the formulation of asynchronous switching and extended asyn-
chronous switching and some necessary preliminaries are stated. The global asymp-
totic stability and input-to-state stability are then discussed in Sect. 3.3.1. Then, the
main results are extended to a class of hybrid stochastic delay systems and the sim-
ulation results are given in Sect. 3.4.1. Similar stability analysis but for the SSNLRS
under extended asynchronous switching is discussed in Sect. 3.3.2, with an example
given in Sect. 3.4.2. Section 3.5 concludes the chapter.

3.2 Asynchronous and Extended Asynchronous Switching

Consider the following stochastic nonlinear systems:

{
dx(t) = f (t, xt , ν(t), r(t))dt + g(t, xt , ν(t), r(t))dB(t),
ν(t) = h(t, xt , u(t), r ′(t)), (3.1)

with the initial state x0 = {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ C b
F0

([−τ, 0]; R
n) and r0 =

r(0) = i0, where xt = {x(t + θ) : −τ ≤ θ ≤ 0} is a C ([−τ, 0]; R
n)-valued random

variable. B(t) = (B1(t), B2(t), . . . , Bm(t))T is a m-dimensional Brownian motion
defined on the complete probability space (Ω,F , {Ft }t≥0, P), with Ω being the

sample space, F being a σ -algebra, {Ft }t≥0 being a filtration and satisfies the usual
conditions and P being a complete probability measure. r(t) is the true switching
signal and r ′(t) is the detected switching signal which satisfied Assumption 3.1.

In addition, in system (3.1), ν(t) ∈ L l∞ is the control input, which relies on the
detected switching signal r ′(t). L l∞ denotes the set of all the measurable and locally
essentially bounded input ν(t) ∈ R

l on [0,∞) with the norm

⎧⎨
⎩

‖ν(s)‖ = inf
A ⊂Ω,P(A )=0

sup{|ν(ω, s)| : ω ∈ Ω\A }
‖ν(s)‖[t0,∞) = sup

s∈[t0,∞)

‖ν(s)‖ (3.2)

u(t) ∈ L k∞ is the reference input. Moreover, f : R+ × C ([−τ, 0]; R
n) × R

l ×
S → R

n and g : R+ × C ([−τ, 0]; R
n) × R

l × S → R
n×m are continuous with

respect to t , x(t), u(t), and satisfy uniformly locally Lipschitz condition with respect
to x(t), u(t), and for any i ∈ S , f (t, 0, 0, i) ≡ 0, g(t, 0, 0, i) ≡ 0.
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Given that the true switching signal is not available for the controller design in
practical, in what follows, we are concerned with the stability analysis of systems
(3.1) under the following state feedback control law,

ν = h(t, xt , u, r ′). (3.3)

where r ′ = r ′(t) is the detected switching signal, u = u(t) ∈ L k∞ is the reference
input, and h : R+ × C ([−τ, 0]; R

n) × R
k × S → R

l is measurable function with
h(t, 0, 0, i) ≡ 0, for any i ∈ S .

For convenience, denote

f̄ (t, xt , u, r, r ′) = f (t, xt , h(t, xt , u, r ′), r)

ḡ(t, xt , u, r, r ′) = g(t, xt , h(t, xt , u, r ′), r)

For convenience, let f̄i j (t, xt , u(t)) and ḡi j (t, xt , u(t)) denote f̄ (t, xt , u(t), i, j)
and ḡ(t, xt , u(t), i, j), respectively, for any i, j ∈ S . Specifically, when i = j , the
mode-dependent controller and the system operate synchronously, while when i �=
j , they operate asynchronously. Due to ν(t) relies not on r(t) but on r ′(t), when
r ′(t) �= r(t), i.e., on the asynchronous time interval, the designed controller is an
mismatched one for the controlled system, which may cause the degradation of
control loop performance and even make it unstable.

In the chapter, it is also assumed that f̄ , ḡ satisfy the local Lipschitz condition
and the linear growth condition , hence for the closed-loop system

dx(t) = f̄ (t, xt , u(t), r(t), r ′(t))dt + ḡ(t, xt , u(t), r(t), r ′(t))dB(t) (3.4)

there exists an unique solution on t ≥ −τ .

Assumption 3.1 ([11]) The values of r(t) and r ′(t) can be divided into two cases:
the quiescent case r(t) = r ′(t) = i and the transient case r(t) = i , r ′(t) = j , j �= i .
In the first case, only the true modes switches and false alarms may occur. The later
case corresponds to the detection delay or to the recovery from a false alarm. The
only possible switch is thus a switch of r ′(t) from j to i , corresponding to the end of
the transient, and this switch occurs on the average after 1

π0
j i

seconds. In mathematic,

Case I. When r(t) has switched from i to j , r ′(t) follows with a delay d that is
an independent exponentially distributed random variable with mean 1

π0
i j

.

This is written as

P{r ′(t + Δ) = j |r ′(s) = i, s ∈ [t∗, t], r(t∗) = j, r(t∗−) = i}
=

{
π0

i jΔ + o(Δ), i �= j
1 + π0

i iΔ + o(Δ), i = j.
(3.5)
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The entries of the matrix, Π0 = [π0
i j ]N×N ∈ R

N×N , are evaluated from observed
sample paths, and

π0
i i = −

∑
j �=i

π0
i j , (π

0
i j ≥ 0, i �= j). (3.6)

Case II. When r(t) remains at i , r ′(t) has transitioned from i to j occasionally.
An independent exponential distribution with rate π1

i j is again assumed

P{r ′(t + Δ) = j |σ ′(s) = i, s ∈ [t∗, t]}
=

{
π1

i jΔ + o(Δ), i �= j
1 + π1

i iΔ + o(Δ), i = j
(3.7)

with a matrix, Π1 = [π1
i j ]N×N ∈ R

N×N , of false alarm rates, which can also be valued
from observed sample paths, and

π1
i i = −

∑
j �=i

π1
i j , (π

1
i j ≥ 0, i �= j). (3.8)

According to [11], it then follows from Assumption 3.1 that:

Property 3.1 According to Assumption3.1, the greater π0
i j is the faster detection

response speed is, and the smaller π1
i j is the less of the number of false alarms is,

where i, j ∈ S . When π0
i j → ∞ and π1

i j = 0, the detection for the actual switching
signal is perfect.

3.2.1 Asynchronous Switching

The systems (3.1) under asynchronous switching are called hybrid stochastic retarded
systems (HSRSs). In asynchronous switching systems, we only consider the detection
delay, and ignore the detection error. According to Property 3.1, in asynchronous
switching systems, r ′(t) should be satisfy Case I of Assumption 3.1, i.e. π1

i j = 0 and
π0

i j < ∞. Besides, the r(t) in asynchronous switching systems we consider in this
chapter is Markovian, i.e. r(t) is a right-continuous Markov process on the probability
space taking values in a finite state space S = {1, 2, . . . , N } with generator Π =
{πi j }N×N given by

P{r(t + Δ) = j | r(t) = i} =
{

πi jΔ + o(Δ), i �= j
1 + πi iΔ + o(Δ), i = j

(3.9)

where Δ > 0 is a sufficiently small positive number, and limΔ→0
o(Δ)

Δ
= 0. πi j ≥ 0

is the transition rate from i to j ( j �= i), and πi i = −∑N
j=1, j �=i πi j . Let π̄ �
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maxi∈S {|πi i |} and π̃ � maxi, j∈S {πi j } and assume the Markov process r(t) is inde-
pendent of the Brownian motion B(t).

In the next, we make some definitions for the Markov process r(t) and the detected
switching signal r ′(t). Firstly, r(t) is assumed to be a regular Markov process with
standard transition probability matrix. Let the sequence {tl}l≥0 denote the switching
instants sequence of r(t), and r(tl) = il , t0 = 0. When il = i , tl+1 − tl is called the
sojourn-time of Markov process in mode i . As usual, the sojourn-time sequence
{tl+1 − tl}l≥0 belongs to an exponential distribution with rate parameter λ(i), where
0 ≤ λ(i) < ∞ is the transition rate of r(t) in mode i . Further, for all i, j ∈ S and
i �= j , E{tl+1 − tl |il = i, il+1 = j} = 1

λ(i) , where λ(i) denotes the reciprocal of the
average sojourn-time of Markov process r(t) in mode i . According to (3.9), we also
have λ(i) = −πi i . On the other hand, the detected switching r ′(t) is considered as
r ′(t) = r(t − d(t)), and it is the only switching signal which can be obtained and
used by the controller. Let {t ′

l }l≥0 denote the switching instants sequence of r ′(t). As
in [11], the following statements are assumed to describe the characteristic of r ′(t).
When r(t) jumps from i to j , r ′(t) follows r(t) with a delay and satisfies Case I of
Assumption 3.1.

Clearly, when letting π0
i j → ∞, the detection is instantaneous. It is assumed that

π0
i j is sufficiently large and 0 ≤ d(t) ≤ d ≤ inf{tl+1 − tl}. Further, r ′(t) is causal,

meaning that the ordering of the switching instants of r ′(t) is the same as the ordering
of the corresponding switching instants of r(t). Thus, it follows that 0 = t0 = t ′

0 <

t1 ≤ t ′
1 < t2 ≤ t ′

2 < · · · < tl ≤ t ′
l < tl+1 < · · · , where t ′

l = tl + d(tl) for any l ≥ 1.
Define a virtual switching signal r̄(t), from [0,∞) toS × S , by r̄(t) = (r(t), r ′(t)).
Let {t̄l}l≥0 denote the switching instants of r̄(t). Then, for any l ≥ 1, t̄0 = t ′

0 = t0,
t̄2l−1 = tl and t̄2l = t ′

l .

Remark 3.1 Various algorithms exist for the detection of Markovian switching sig-
nal. In this chapter, we choose the method discussed in [11], referred to as the optimal
minimum probability of error bayesian detector. As in [11], r ′(t) is assumed to have
the similar characteristics as r(t), and hence, r ′(t) is regarded as a conditional Markov
process.

In Sect. 3.3.1, we focus on the stability analysis of system (3.1) under asynchro-
nous switching. In system (3.1), each subsystem is described by a stochastic func-
tional differential equation, and the switching rule between those subsystems is a
continuous-time Markov process. We will consider the asynchronous case with ran-
dom detection delay and model the detected switching signal as a Markov process
conditional on the real Markovian switching signal. The Razumikhin-type sufficient
criteria for globally asymptotically stability in probability (GASiP) [8], α-globally
asymptotically stability in the mean (α-GASiM) [28], pth moment exponentially sta-
bility [10], stochastic input-to-state stability (SISS) [8], α-input-to-state stability in
the mean (α-ISSiM) [28] and pth moment input-to-state stability (pth moment ISS)
[2] are given. It is shown that, the stability of HSRSs under asynchronous switching
can be guaranteed provided that the mode transition rate is sufficiently small, i.e., a
larger instability margin can be compensated for by a smaller transition rate.

To prove these results, the following lemma is required.
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Lemma 3.1 For any given V (x(t), t, r(t), r ′(t)) ∈ C 2,1(Rn × R+ × S × S ; R+),
associated with system (3.4), the diffusion operator LV , from C ([−τ, 0]; R

n) ×
R+ × S × S to R, can be described as follows.

Case I. When r ′(t) = r(t) = i , then

LV (xt , t, i, i)

= Vt (x(t), t, i, i) + Vx (x(t), t, i, i) f̄i i (t, xt , u)

+ 1

2
tr [ḡT

ii (t, xt , u)Vxx (x(t), t, i, i)ḡi i (t, xt , u)]

+
N∑

k=1

πik V (x(t), t, k, i). (3.10)

Case II. When r ′(t) = i , r(t) = j and j �= i , then

LV (xt , t, j, i)

= Vt (x(t), t, j, i) + Vx (x(t), t, j, i) f̄ j i (t, xt , u)

+ 1

2
tr [ḡT

ji (t, xt , u)Vxx (x(t), t, j, i)ḡ j i (t, xt , u)]
+ π0

i j V (x(t), t, j, j) − π0
i j V (x(t), t, j, i). (3.11)

Remark 3.2 Lemma 3.1 is from (2) in [2] and Lemma 3 in [4]. When r ′(t) ≡ r(t)
for all t ≥ 0, (3.10) is the same as (2) in [2]. Otherwise, (3.10) and (3.11) are similar
to the ones in Lemma 3 in [4]. Lemma 3 in [4] considers also false alarms of r ′(t). In
asynchronous switching systems, the causality of r ′(t) means Π1 = {π1

i j }N×N = 0
and (3.10) follows.

3.2.2 Extended Asynchronous Switching

The systems (3.1) under extended asynchronous switching are called switched sto-
chastic nonlinear retarded systems (SSNLRS). Note that, for extended asynchronous
switching systems, the r(t) considered in system (3.1) is deterministic.

In this scenario, r = r(t) : [t0,∞) → S (S is the index set, and may be infinite)
is the switching law and is right hand continuous and piecewise constant on t , r(t)
discussed in extended asynchronous switching systems is time dependent, and the
corresponding switching instants sequence is {tl}l≥0. The il th subsystems will be
activated at time interval [tl, tl+1). Specially, when t = t0 (t0 is the initial time),
suppose r0 = r(t0) = i0 ∈ S . Besides, r ′(t) is the the detected switching signal
satisfied Assumption 3.1.

From Assumption 3.1, under any time interval [tm, tm+1), where tm, tm+1 ∈ {tl}l≥0,
the number of switches of r ′(t) can only be the following two cases: 2k + 1 and
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Fig. 3.1 The re-definition of {t ′l }l≥0 on interval [ti , ti+1)

2k, where k ≥ 0 is the switch number of r ′(t) which caused by false alarm. We
assume r(tm) = im . First, r ′(t) will first switch to im with responding to transient
case, i.e., detection delay process, and the detection delay doesn’t equal to zero.
After r ′(t) = im, t ∈ (tm, tm+1), if a false alarm occurs, the next switch is that r ′(t)
switch to im (recovery from the false alarm mode). Thus, before time tm+1, the
total switch number of r ′(t) is 2k + 1. Second, if the detection delay is zero, i.e.,
r ′(tm) = r(tm) = im , then total switch number of r ′(t) on [tm, tm+1) will be 2k.

Let {t ′
l }l≥0 denote the switching instants sequence of r ′(t), with t0 = t ′

0 and r ′(t ′
0) =

r(t0). For any i ∈ N+ ∪ {0}, let N (ti+1, ti ) denote the number of switches of r ′(t) on
[ti , ti+1). Moreover, as shown in Fig. 3.1, we subdivide the sequence {t ′

l }l≥0 into a
sequence of subsets, i.e., {t ′

l }l≥0 = ⋃
i {t ′

i1, t ′
i2, . . . , t ′

i N (ti+1,ti )
}, such that {t ′

i1, t ′
i2,

. . . , t ′
i N (ti+1,ti )

} ⊂ [ti , ti+1). In the sequel, we assume that r(t−
i ) = r ′(t−

i ) and r ′(t) =
r(t) = r(t0) = i0, for any t ∈ (t0, t1). Note that, for any i ∈ N+ ∪ {0}, r(t−

i ) = r ′(t−
i )

means that the switches between the subsystems of switched system occur in the case
that the controller and the system operate synchronously. The hypothesis is commonly
employed in the context in asynchronous switching systems, in which there always
exists the period that the controller and the system run synchronously [16–18, 24, 25].

For any i ∈ N, if the detection delay is non-zero, then the controller mode
is strictly synchronous with the system on the following time intervals: [t ′

i1, t ′
i2),[t ′

i3, t ′
i4), . . . , [t ′

i N (ti+1,ti )
, ti+1).

We define Ts(t0, t1) = [t0, t1), Ts(ti , ti+1) = ⋃
j=1,3,...,N (ti+1,ti )

[t ′
i j , t ′

i( j+1)), and for
simplicity Ta(ti , ti+1)=⋃

j=0,2,...,N (ti+1,ti )−1[t ′
i j , t ′

i( j+1)), where t ′
i(N (ti+1,ti )+1) = ti+1,

t ′
i0 = ti . However, if the detection delay is equal to zero, then the controller mode

is strictly synchronous with the system on the following time intervals: [ti , t ′
i1),[t ′

i2, t ′
i3), . . . , [t ′

i N (ti+1,ti )
, ti+1). In this case, Ts(ti , ti+1) = ⋃

j=0,2,...,N (ti+1,ti )
[t ′

i j , t ′
i( j+1)),

and Ta(ti , ti+1) = ⋃
j=1,3,...,N (ti+1,ti )−1[t ′

i j , t ′
i( j+1)). Then, Ts(ti , ti+1)

⋂
Ta(ti , ti+1) =

∅, [ti , ti+1) = Ta(ti , ti+1)
⋃

Ts(ti , ti+1). In the sequel, we let Ta(t − s) denote the
length of Ta(t, s), for any t ≥ s ≥ t0.

To simplify the expression, the next definition is needed.

Definition 3.1 [6] For any given constants τ ∗ > 0 and N0, let Nr (t, s) denote the
switch number of r(t) in [s, t), for any t > s ≥ t0, and let
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S[τ ∗, N0] = {r(·) : Nr (t, s) ≤ N0 + t − s

τ ∗ , ∀s ∈ [t0, t)}.

then τ ∗ is called the average dwell-time of S[τ ∗, N0], and τr �sup
t≥t0

sup
t>s≥t0

t−s
Nr (t,s)−N0

is

called the average dwell-time of r(·).
In Sect. 3.3.2, stochastic input-to-state stability for system (3.1) under extended

asynchronous switching will be investigated. The Razumikhin-type stability criteria
based on average dwell time approach are developed for the proposed extended
asynchronous switching system.

3.3 Stability Analysis Under the Two Switchings

3.3.1 Stability Analysis Under Asynchronous Switching

From the definition of ISS, an ISS system is GAS if the input u ≡ 0. Therefore,
the GAS property is useful for ISS. In this section, GAS in probability and in pth
moment are considered.

To begin with, a useful lemma is stated as follows.

Lemma 3.2 Let V (t) = eλt V (x(t), t, r̄(t)) = eλt V (x(t), t, r(t), r ′(t)) for all t ≥ 0
and λ ≥ 0, then

D+E{V (t)} = E{LV (t)}
= λE{V (t)} + eλt E{LV (xt , t, r(t), r ′(t)))}, (3.12)

where D+E{V (t)} = lim supdt→0+
E{V (t+dt)}−E{V (t)}

dt .

Proof Firstly, for any k1, k2 ∈ S , it follows

E{V (t + dt)|x(t), r(t) = k1, r ′(t) = k2, t}
= E{V (t) + λV (t)dt |x(t), r(t) = k1, r ′(t) = k2, t}
+ E{eλt Vt (x(t), t, r̄(t))dt |x(t), r(t) = k1, r ′(t) = k2, t}
+ E{eλt Vx (x(t), t, r̄(t)) f̄ (t, xt , u, r̄(t))dt

+ 1

2
eλt tr [ḡT (t, xt , u, r̄(t))Vxx (x(t), t, r̄(t))

× ḡ(t, xt , u, r̄(t))]dt |x(t), r(t) = k1, r ′(t) = k2, t}
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+ E{eλt V (x(t), t, r(t + dt), r ′(t))

+ eλt V (x(t), t, r(t), r ′(t + dt))|x(t), r(t) = k1,

r ′(t) = k2, t} + o(dt), (3.13)

which is in accordance with Lemma 3.1. We complete the proof by considering the
following two cases: r(t) = r ′(t) = i and r ′(t) = i , r(t) = j , respectively, where
i, j ∈ S and j �= i .

Case I. r ′(t) = r(t) = i .
In this case, only the true mode switches may occur. Using the conclusion in [11],

it follows

E{eλt V (x(t), t, r(t + dt), r ′(t))|x(t), r(t) = r ′(t) = i, t}

=
N∑

j=1

πi j [eλt V (x(t), t, j, i) − eλt V (x(t), t, i, i)]dt

=
N∑

j=1

πi j e
λt V (x(t), t, j, i)dt,

E{eλt V (x(t), t, r(t), r ′(t + dt))|x(t), r(t) = r ′(t) = i, t}
= π1

i i [eλt V (x(t), t, i, i) − eλt V (x(t), t, i, i)]dt = 0.

Then,

E{V (t + dt)|x(t), r ′(t) = r(t) = i, t}
= E{V (t)|x(t), r ′(t) = r(t) = i, t}
+ [λeλt V (x(t), t, i, i) + eλtLV (xt , t, i, i)]dt + o(dt), (3.14)

where LV (xt , t, i, i) is defined in (3.10). Taking the expectation on the both sides of
(3.14),

D+E{eλt V (x(t), t, i, i)} = E{λeλt V (x(t), t, i, i) + eλtLV (xt , t, i, i)}. (3.15)

Case II. r ′(t) = i , r(t) = j .
This situation corresponds to the detection delay, and it is assumed that the true

mode r(t) doesn’t switch during this short time lapse. The only possible switch is
that r ′(t) switches from i to j , corresponding to the end of the transient, and this
switch occurs on the average after 1

π0
i j

seconds.
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Then,

E{eλt V (x(t), t, r(t + dt), r ′(t))| x(t), r(t) = j
r ′(t) = i, t

}
= π j j [eλt V (x(t), t, j, i) − eλt V (x(t), t, j, i)]dt = 0,

E{eλt V (x(t), t, r(t), r ′(t + dt))| x(t), r(t) = j
r ′(t) = i, t

}
= π0

i j [eλt V (x(t), t, j, j) − eλt V (x(t), t, j, i)]dt.

Thus, similar to (3.14), it holds that

D+E{eλt V (x(t), t, j, i)}
= E{λeλt V (x(t), t, j, i) + eλtLV (xt , t, j, i)}, (3.16)

where LV (xt , t, j, i) in this case is defined in (3.11).
Combining (3.15) and (3.16), and considering the arbitrary of i , j , it follows

(3.12), for t ≥ 0. Thus we complete the proof.

Using Lemma 3.2, the criteria of GASiP for system (3.4) is obtained.

Theorem 3.1 System (3.4) with u ≡ 0 is GASiP if there exist functions α1 ∈
K∞, α2 ∈ CK ∞, constants μ ≥ 1, q > 1, λ2, 0 < ς < 1, and V (x(t), t, r̄(t)) ∈
C2,1(Rn × R+ × S × S ; R+), such that

α1(|x(t)|) ≤ V (x(t), t, r̄(t)) ≤ α2(|x(t)|) (3.17)

and for any l ∈ N+, there exists λ̄1 ∈ (0, λ1) such that

E{LV (ϕ(θ), t, r̄(t))}
≤

{−λ1 E{V (ϕ(0), t, r̄(t))}, t ∈ [t̄2l−2, t̄2l−1)

λ2 E{V (ϕ(0), t, r̄(t))}, t ∈ [t̄2l−1, t̄2l)
(3.18)

provided those ϕ ∈ L p
Ft

([−τ, 0]; R
n) satisfying that

min
i, j∈S

E{V (ϕ(θ), t + θ, i, j)} < q E{V (ϕ(0), t, r̄(t))}, (3.19)

where

eλ̄1τ < q (3.20)

and moreover,

E{V (x(t̄l), t̄l , r̄(t̄l))} ≤ μE{V (x(t̄l), t̄l , r̄(t̄l−1))} (3.21)
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with some λ̄2 ∈ (λ2,∞) such that

μ2e(λ̄1+λ̄2)d π̄ − π̃ ≤ ςλ̄1. (3.22)

Proof According to (3.12) in Lemma 3.2, we have

D+E{V (x(t), t, r̄(t))} = E{LV (xt , t, r̄(t))}, (3.23)

for any t ∈ [t̄2l−2, t̄2l−1) ∪ [t̄2l−1, t̄2l), l ∈ N+, with t̄0 = t0 = t ′
0 = 0.

On the one hand, from (3.17), using Jensen’s inequality, one can obtain

E{V (x(t), t, i0, i0)} = E{V (x(t), t, r̄(t))} ≤ E{α2(|x(t)|)} ≤ α2(E{‖ξ‖}),

for any t ∈ [t0 − τ, t0].
In the following, we shall prove that

E{V (x(t), t, i0, i0)} ≤ α2(E{‖ξ‖})e−λ̄1(t−t0), (3.24)

for t ∈ [t̄0, t̄1) = [t0, t1).
Suppose (3.24) is not true, i.e., there exists some t ∈ (t0, t1) such that

E{V (x(t), t, i0, i0)} > α2(E{‖ξ‖})e−λ̄1(t−t0). (3.25)

Let t∗ = inf{t ∈ (t0, t1) : E{V (x(t), t, i0, i0)} > α2(E{‖ξ‖})e−λ̄1(t−t0)}. Then
t∗ ∈ (t0, t1) and E{V (x(t∗), t∗, i0, i0)} = α2(E{‖ξ‖})e−λ̄1(t∗−t0). Further, there exists
a sequence {t̃n} (t̃n ∈ (t∗, t1), for any n ∈ N+) with limn→∞ t̃n = t∗, such that

E{V (x(t̃n), t̃n), i0, i0} > α2(E{‖ξ‖})e−λ̄1(t̃n−t0). (3.26)

From the definition of t∗, for any θ ∈ [−τ, 0], it follows

E{V (x(t∗ + θ), t∗ + θ, i0, i0)}
≤ e−λ̄1θ E{V (x(t∗), t∗, i0, i0)}
≤ eλ̄1τ E{V (x(t∗), t∗, i0, i0)},

and further, for θ ∈ [−τ, 0],

min
i, j∈S

E{V (x(t∗ + θ), t∗ + θ, i, j)} < q E{V (x(t∗), t∗, i0, i0)},

thus, from (3.18) and (3.23), we obtain
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D+E{V (x(t∗), t∗, i0, i0)} ≤ −λ1 E{V (x(t∗), t∗, i0, i0)}
< −λ̄1 E{V (x(t∗), t∗, i0, i0)}.

Then, for h > 0 which is sufficient small, it holds

D+E{V (x(t∗), t∗, i0, i0)} ≤ −λ̄1 E{V (x(t∗), t∗, i0, i0)},

for t ∈ [t∗, t∗ + h].
Hence,

E{V (x(t∗ + h), t∗ + h, i0, i0)} ≤ E{V (x(t∗), t∗, i0, i0)}e−λ̄1h,

which is a contradiction to (3.26). Therefore, (3.24) holds. Combining the continuity
of function V (x(t), t, i0, i0) and (3.21), we have

E{V (x(t̄1), t̄1, r̄(t̄1))} ≤ μE{V (x(t̄1), t̄1, r̄(t̄0))} ≤ μα2(E{‖ξ‖})e−λ̄1(t1−t0).

(3.27)

Let W (t, r̄(t)) = eλ̄1t V (x(t), t, r̄(t)). In the sequel, we will show that for any
t ∈ [t̄2l−1, t̄2l+1),

E{W (t, r̄(t))} ≤ μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)d . (3.28)

The following three cases are considered: t ∈ [t̄2l−1, t̄2l), t = t̄2l and t ∈ (t̄2l, t̄2l+1).
First, when t ∈ [t̄2l−1, t̄2l), we claim that

E{W (t, r̄(t))} ≤ μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)(t−t̄2l−1). (3.29)

Suppose (3.29) is not true. Then, there exists some t ∈ [t̄2l−1, t̄2l) such that

E{W (t, r̄(t))} > μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)(t−t̄2l−1).

Let

t∗ = inf{t ∈ [t̄2l−1, t̄2l) : E{W (t, r̄(t̄2l))} >

μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)(t−t̄2l−1)},

thus
E{W (t∗, r̄(t̄2l))} = μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)(t∗−t̄2l−1).
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Considering the continuity, there exists a list of sequence {t̃n}n∈N+ ∈ (t∗, t̄2l) with
limn→∞ t̃n = t∗ such that

E{W (t̃n, r̄(t̄2l))} > μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)(t̃n−t̄2l−1). (3.30)

Define U (t) = e−(λ̄1+λ̄2)t E{W (t, r̄(t))}, then

D+U (t) = −λ̄2e−λ̄2t E{V (x(t), t, r̄(t))} + e−λ̄2t D+E{V (x(t), t, r̄(t))}.

From the definition of t∗, for any θ ∈ [−τ, 0], it follows

μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)(t∗+θ−t̄2l−1)

= E{W (t∗, r̄(t̄2l−1))}e(λ̄1+λ̄2)θ

≥ E{W (t∗ + θ, r̄(t̄2l−1))},

which means

E{V (x(t∗ + θ), t∗ + θ, r̄(t̄2l−1))}
≤ E{V (x(t∗), t∗, r̄(t̄2l−1))}eλ̄2θ ≤ E{V (x(t∗), t∗, r̄(t̄2l−1))}. (3.31)

Hence,

min
i, j∈S

E{V (x(t∗ + θ), t∗ + θ, i, j)} < q E{V (x(t∗), t∗, r̄(t̄2l−1))}.

Then,

D+U (t∗) = −λ̄2e−λ̄2t∗
E{V (x(t∗), t∗, r̄(t̄2l−1))}

+ e−λ̄2t∗
D+E{V (x(t∗), t∗, r̄(t̄2l−1))}

≤ −(λ̄2 − λ2)e
−λ̄2t∗

E{V (x(t∗), t∗, r̄(t̄2l−1))}.

Note that either E{V (x(t∗), t∗, r̄(t̄2l−1))} = 0 or E{V (x(t∗), t∗, r̄(t̄2l−1))} > 0.
In the case E{V (x(t∗), t∗, r̄(t̄2l−1))} = 0, we have x(t∗) = 0 a.s. From (3.31) and
(3.17), we have x(t∗ + θ) = 0 a.s. for any θ ∈ [−τ, 0]. Recalling that h(t∗, 0, 0,

r ′(t̄2l−1)) = 0, f (t∗, 0, 0, r(t̄2l−1)) = 0 and g(t∗, 0, 0, r(t̄2l−1)) = 0, hence f̄ (t∗, 0,

0, r̄(t̄2l−1)) = 0 and g(t∗, 0, 0, r̄(t̄2l−1)) = 0. Thus, one sees that x(t∗ + h) = 0 a.s.,
for all h > 0, i.e., E{W (t∗ + h, r̄(t̄2l−1))} = 0, which is a contradiction of (3.30).

On the other hand, in the case E{V (x(t∗), t∗, r̄(t̄2l−1))} > 0, there exists a positive
number h which is sufficient small such that D+U (t) ≤ 0, for all t ∈ [t∗, t∗ + h],
which means

E{W (t∗ + h, r̄(t̄2l−1))} ≤ e(λ̄1+λ̄2)h E{W (t∗, r̄(t̄2l−1))}
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and it is a contradiction to (3.30). Therefore (3.29) holds. Further, (3.28) holds on
t ∈ [t̄2l−1, t̄2l).

By considering the continuity of W (t, r̄(t̄2l−1)) at time t = t̄2l , it follows

E{W (t̄2l , r̄(t̄2l))} ≤ μE{W (t̄2l−1, r̄(t̄2l−1))}e(λ̄1+λ̄2)d .

Following the similar analysis on interval (t̄2l−1, t̄2l), one can prove that (3.28)
holds on (t̄2l, t̄2l+1), and then it holds on [t̄2l−1, t̄2l+1).

Thus,

E{V (x(t), t, r̄(t))}
≤ μE{V (x(t̄2l−1), t̄2l−1, r̄(t̄2l−1))}e−λ̄1(t−t̄2l−1) × e(λ̄1+λ̄2)d , (3.32)

where t ∈ [t̄2l−1, t̄2l+1).
By considering the continuity of V (x(t), t, r̄(t̄2l)), one can see that (3.32) holds

at time t̄2l+1, and then,

E{V (x(tl+1), tl+1, r̄(tl+1))}
≤ μ2 E{V (x(tl), tl , r̄(tl))}e−λ̄1(tl+1−tl )e(λ̄1+λ̄2)d . (3.33)

For any t ≥ t̄1 = t1, iterating (3.32) from l = 1 to l = Nr (t, t1) + 1, one can obtain

E{V (x(t), t, r̄(t))}
≤ μ2 E{V (x(tNr (t,t1)+1), tNr (t,t1)+1, r̄(tNr (t,t1)+1))} × e(λ̄1+λ̄2)de−λ̄1(t−tNr (t,t1)+1)

= E{μ2(Nr (t,t1)+1−Nr (t,t1))e(Nr (t,t1)+1−Nr (t,t1))(λ̄1+λ̄2)d}
× E{V (x(tNr (t,t1)+1), tNr (t,t1)+1, r̄(tNr (t,t1)+1))} × e−λ̄1(t−tNr (t,t1)+1)

≤ E{μ2(Nr (t,t1)+1−Nr (t,t1))e(Nr (t,t1)+1−Nr (t,t1))(λ̄1+λ̄2)d}
× μ2e(λ̄1+λ̄2)d E{V (x(tNr (t,t1)), tNr (t,t1), r̄(tNr (t,t1)))} × e−λ̄1(t−tNr (t,t1))

= E{μ2(Nr (t,t1)+2−Nr (t,t1))e(Nr (t,t1)+2−Nr (t,t1))(λ̄1+λ̄2)d}
× E{V (x(tNr (t,t1)), tNr (t,t1), r̄(tNr (t,t1)))} × e−λ̄1(t−tNr (t,t1))

≤ · · ·
≤ E{μ2(Nr (t,t1)−2)e(Nr (t,t1)−2)(λ̄1+λ̄2)d}μ2e(λ̄1+λ̄2)d

× E{V (x(t2), t2, r̄(t2))}e−λ̄1(t−t2)

= E{μ2(Nr (t,t1)−1)e(Nr (t,t1)−1)(λ̄1+λ̄2)d} × E{V (x(t2), t2, r̄(t2))}e−λ̄1(t−t2)

≤ E{μ2(Nr (t,t1)−1)e(Nr (t,t1)−1)(λ̄1+λ̄2)d}μ2e(λ̄1+λ̄2)d

× E{V (x(t1), t1, r̄(t1))}e−λ̄1(t−t1)

= E{μ2Nr (t,t1)eNr (t,t1)(λ̄1+λ̄2)d} × E{V (x(t1), t1, r̄(t1))}e−λ̄1(t−t1). (3.34)
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Combining (3.27) with (3.34), we arrive at

E{V (x(t), t, r̄(t))} ≤ E{μ2Nr (t,0)e(λ̄1+λ̄2)Nr (t,0)d} × α2(E{‖ξ‖})e−λ̄1t , (3.35)

for any t ≥ t0 − τ .
According to Lemma 6 in [1], let s = 2 ln(μ) + (λ̄1 + λ̄2)d, there exists a positive

number M > 0 such that

e−ςλ̄1t E{μ2Nr (t,0)e(λ̄1+λ̄2)Nr (t,0)d} ≤ Me−ςλ̄1t + e[μ2e(λ̄1+λ̄2)d π̄−π̃−ςλ̄1]t .

When ςλ̄1 ≥ μ2e(λ̄1+λ̄2)d π̄ − π̃ , we have

e−ςλ̄1t E{μ2Nr (t,0)e(λ̄1+λ̄2)Nr (t,0)d} ≤ M + 1 < ∞.

Then,

E{V (x(t), t, r̄(t))} ≤ M̄e−(1−ς)λ̄1tα2(E{‖ξ‖}) � β̄(E{‖ξ‖}, t), (3.36)

for any M + 1 ≤ M̄ < ∞.
It’s no difficulty to verify β̄(·, ·) ∈ K L when 0 < ς < 1. Then, for any ε > 0,

take β̃ = β̄

ε
. Obviously, β̃(·, ·) ∈ K L . Using Chebyshev’s inequality, we have

P{V (x(t), t, r̄(t)) ≥ β̃(E{‖ξ‖}, t)} ≤ E{V (x(t), t, r̄(t))}
β̃(E{‖ξ‖}, t)

< ε,

i.e.
P{|x(t)| < β(E{‖ξ‖}, t)} ≥ 1 − ε,

where β(r, s) = α−1
1 ◦ β̃(r, s) ∈ K L . Thus, we complete the proof.

Remark 3.3 (i). Assumption (3.18) is widely used in Razumikhin-type stability
criterion and imposes less restrictions on the functions f̄ (t, ϕ(θ), u(t), r̄(t)) and
ḡ(t, ϕ(θ), u(t), r̄(t)), as described in [10]. When t ∈ [t̄2l−1, t̄2l), condition (3.18)
corresponds to the asynchronous case and λ2 may or may not be positive. In what
follows, λ2 is assumed to positive, and λ1 and λ2 denote the minimal stability margin
and maximal instability margin, respectively.

(ii). In Theorem 3.1, condition (3.22) is given to guarantee the stability. Indeed,
for any i ∈ S , there may exist mismatched periods. Those mismatched periods
are usually bounded with d < ∞. In this case, a larger mode sojourn-time is more
appropriate. Based on (3.22), for fixed λ1, μ and ς , a larger instability margin λ2 or
a larger upper bound on detection delay d can be compensated by a smaller π̄ . By
considering π̄ = maxi∈S {|πi i |}, one can obtain a smaller π̄ by decreasing |πi i |. Then
the sojourn-time of r(t) in mode i , E{tl+1 − tl |il = i, il+1 = j} = 1

|πi i | . Furthermore,
one can claim that the average value of the sojourn-time of r(t) is less than or equal to
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1
π̄

, and, the smaller π̄ is, the larger the sojourn-time is. Thus, the stability of the hybrid
stochastic retarded systems under asynchronous switching can be guaranteed by a
sufficient small detection delay and a sufficient small mode transition rate π̄ . This
result has a similar spirit as for asynchronous deterministic switched systems based
on average dwell time approach where the closed-loop stability can be guaranteed
by a sufficient large average dwell time.

The following two corollaries can be obtained directly from Theorem 3.1 and its
proof. Their proofs are omitted.

Corollary 3.1 System (3.4) under a strictly synchronous controller ν(t) with u ≡ 0
is GASiP if μ < λ1+π̃

π̄
, and the conditions (3.17)–(3.21) hold.

Remark 3.4 The similar conclusion can be seen in Corollary 12 in [1], which consid-
ers the GAS a.s. of a class of Markovian switching nonlinear systems. Corollary 3.1
provides a sufficient criterion in stochastic case with retarded delays.

Corollary 3.2 Under the assumptions in Theorem3.1, system (3.4) with u ≡ 0 is
also α1-GASiM. Specially, if α1 ∈ V K ∞, system (3.4) with u ≡ 0 is GASiM. Fur-
thermore, if α1(s) = c1s p, α2(s) = c2s p, where c1 and c2 are positive numbers,
system (3.4) with u ≡ 0 is pth moment exponentially stable.

Based on the conclusions in Theorem 3.1, we will provide the sufficient conditions
of SISS and pth moment ISS for system (3.4).

Theorem 3.2 System (3.4) is SISS, if (3.17), (3.21) and (3.22) hold and there exist
functions α1 ∈ K∞, α2 ∈ CK ∞, χ ∈ K , scalers μ ≥ 1, q > 1, λ1 > 0, λ2, 0 <

ς < 1 and V (x(t), t, r̄(t)) ∈ C 2,1(Rn × R+ × S × S ; R+), such that for any l ∈
N+,

|ϕ(0)| ≥ χ(‖u‖[0,∞)) ⇒ E{LV (ϕ(θ), t, r̄(t))}
≤

{−λ1 E{V (ϕ(0), t, r̄(t))}, t ∈ [t̄2l−2, t̄2l−1)

λ2 E{V (ϕ(0), t, r̄(t))}, t ∈ [t̄2l−1, t̄2l)

provided those ϕ ∈ L p
Ft

([−τ, 0]; R
n) satisfying that (3.19) and (3.20).

Proof Let the time sequences {t i }i≥1 and {t̃i }i≥1 denote the time that the trajec-
tory enters and leaves the set B = {ϕ ∈ L p

Ft
([−τ, 0]; R

n) : |ϕ(0)| < χ(‖u‖[t0,∞))},
respectively. In the following, we will complete the proof by considering the follow-
ing two cases: ξ ∈ BC and ξ ∈ B \ {0}, respectively.

Case I. ξ ∈ BC .
In this case, for any t ∈ [0, t1), |x(t)| ≥ χ(‖u‖[0,∞)). According to Theorem 3.1,

for any ε′ > 0, there exists a K L function β such that

P{|x(t)| < β(E{‖ξ‖}, t)} ≥ 1 − ε′, ∀t ∈ [0, t1). (3.37)
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Now consider the interval t ∈ [t1,∞). Define t̃1 = inf{t > t1 : |x(t)| ≥
χ(‖u‖[t0,∞))}, and inf ∅ = ∞. Clearly, for any t ∈ [t1, t̃1), we have

P{|x(t)| < χ(‖u‖[0,∞))} = 1 ≥ 1 − ε′′, ∀ε′′ > 0. (3.38)

Define t2 = min{t ≥ t̃1 : |x(t)| < χ(‖u‖[t0,∞))}. According to Theorem 3.1, we
also have

P{|x(t)| < β(x(t̃1), t − t̃1)} ≥ 1 − ε′, ∀t ∈ [t̃1, t2).

Similarly, for any i ≥ 2, we define

{
t i = min{t ≥ t̃i−1 : |x(t)| < χ(‖u‖[t0,∞))},
t̃i = inf{t > t i : |x(t)| ≥ χ(‖u‖[t0,∞))}.

By repeating the above induction, for any i ≥ 1, when t ∈ [t i , t̃i ), we can obtain

P{|x(t)| < χ(‖u‖[t0,∞))} = 1 ≥ 1 − ε′′,

and when t ∈ [t̃i , t i+1),

P{|x(t)| < β(E{|x(t̃i )|}, t − t̃i )} ≥ 1 − ε′.

From the proof of Theorem 3.1, the K L function β(r, s) satisfies

β(r, s) ≤ α−1
1 (M̄e−λ3sα2(r)),

for some M̄ ≥ 0, where λ3 ∈ (0, (1 − ς)λ̄1). Since α1 ∈ K∞, further, we can get

β(r, s) ≤ α−1
1 (M̄α2(r)).

Thus, for any i ≥ 1, when t ∈ [t i , t̃i ),

P{|x(t)| < χ(‖u‖[t0,∞))} = 1 ≥ 1 − ε′′, (3.39)

and when t ∈ [t̃i , t i+1),

P{|x(t)| < α−1
1 (M̄α2(E{|x(t̃i )|}))}

≥ P{|x | < β(E{|x(t̃i )|}, t − t̄i )} ≥ 1 − ε′. (3.40)

Considering the continuity of x(t), we have

E{|x(t̃i )|} < χ(‖u‖[t0,∞)), a.s.. (3.41)
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Substituting (3.41) into (3.39) and (3.40), we obtain

P{|x(t)| < γ (‖u‖[0,∞))} ≥ 1 − ε′′′, ∀t ≥ t1, (3.42)

where ε′′′ = max{ε′, ε′′}, γ (s) = max{χ(s), α−1
1 (S̄α2(s))}.

It’s easy to verify that γ ∈ K . Then, combining (3.37) and (3.42), we have

P{|x(t)| < β(E{‖ξ‖}, t) + γ (‖u‖[0,∞))} ≥ 1 − ε, (3.43)

for any ξ ∈ BC , t ≥ 0, where ε = max{ε′, ε′′′}.
Case II. ξ ∈ B \ {0}.
In this case, t1 = 0 a.s. When t > 0, we have P{t ∈ (t1,∞)} = P{t ∈ (t0,∞)} =

1. Following the proof of Case I, the inequality (3.42) still holds.

P{|x(t)| < β(E{‖ξ‖}, t) + γ (‖u‖[0,∞))} ≥ P{|x(t)| < γ (‖u‖[0,∞))} ≥ 1 − ε′′′,
(3.44)

for any t ∈ (0,∞).
When t = 0, by the definition of the set B and the definition of γ , we can obtain

P{|x(0)| < β(E{‖ξ‖}, 0) + γ (‖u‖[0,∞))} ≥ P{|x(0)| < χ(‖u‖[0,∞))} = 1,

which implies, for any ε1 > 0,

P{|x(0)| < β(E{‖ξ‖}, 0) + γ (‖u‖[0,∞))} ≥ 1 − ε1, (3.45)

Combining (3.44) and (3.45), we have

P{|x(t)| < β(E{‖ξ‖}, t) + γ (‖u‖[0,∞))} ≥ 1 − ε, (3.46)

for all t ≥ 0, ξ ∈ B \ {0}, where ε = max{ε′′′, ε1}.
Combining the proof of Case I and Case II, for any ε > 0, t ≥ 0 and ξ ∈

C b
F0

([−τ, 0]; R
n), we have

P{|x(t)| < β(E{‖ξ‖}, t) + γ (‖u‖[0,∞))} ≥ 1 − ε.

By causality we get

P{|x(t)| < β(E{‖ξ‖}, t) + γ (‖u‖[0,t))} ≥ 1 − ε.

Thus, we complete the proof.

Remark 3.5 Since the existence of asynchronous period, if x(t∗) ∈ B for some t∗ ≥
0, we cannot guarantee that |x(t)| < χ(‖u‖[0,∞)) a.s., for any t > t∗. But, from (3.42),
it will be upper bounded by ‖u‖[0,∞) in probability.
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Similar to Corollary 3.2, we have the following results.

Corollary 3.3 Under the hypotheses of Theorem3.2, system (3.4) is also α1-ISSiM.
Specially, if α1(s) = c1s p, α2(s) = c2s p, where c1 and c2 are positive numbers,
system (3.4) is pth moment ISS.

3.3.2 Stability Analysis Under Extended Asynchronous
Switching

This section presents the stability criteria for the SSNLRS under extended asynchro-
nous switching controller. By using Razumikhin-type theorem and average dwell
time approach, we give the sufficient conditions for internal stability, i.e., globally
asymptotically stability in probability and pth moment exponentially stability. Using
the internal stability criteria, then the external stability criteria are developed, includ-
ing SISS and pth moment ISS. Before continuing, some necessary lemmas are stated
as follows.

Lemma 3.3 For any given V (x(t), t, r(t), r ′(t)) ∈ C 2,1(Rn × R+ × S × S ; R+),
associated with system (3.4), the diffusion operator LV , from C ([−τ, 0]; R

n) ×
R+ × S × S to R, can be described as follows.

Case I. When r = r ′ = i , we have

LV (xt , t, i, i) = Vt (x, t, i, i) + Vx (x, t, i, i) f̄i i (t, xt , u) +
N∑

k=1

π1
ik V (x, t, i, k)

+ 1

2
tr [ḡT

ii (t, xt , u)Vxx (x, t, i, i)ḡi i (t, xt , u)]. (3.47)

Case II. When r ′ = j , r = i and j �= i , we also have

LV (xt , t, i, j) = Vt (x, t, i, j) + Vx (x, t, i, j) f̄i j (t, xt , u)

+ π0
j i V (x, t, i, i) − π0

j i V (x, t, i, j)

+ 1

2
tr [ḡT

i j (t, xt , u)Vxx (x, t, i, j)ḡi j (t, xt , u)]. (3.48)

where i, j ∈ S .

Proof The proof can be got directly from [10, 11].

Lemma 3.4 [1] Let r(t) denote a continuous-time Markov process with transition
rate matrix [πi j ]N×N ∈ R

N×N , then

P{Nr (t, 0) = k} ≤ e−π̃ t (π̄ t)k

k! ,
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for any k ≥ 0, where π̄ � maxi∈S {|πi i |}, π̃ � maxi, j∈S {πi j }, and Nr (t, 0) denotes
the number of switches of r(t) on the time-interval [0, t].
Lemma 3.5 For any i ≥ 0, we have

P{N (ti+1, ti ) = k} ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−π̃1(ti+1−ti ) (π̄1(ti+1−ti ))
k−1

2

k−1
2 ! ,

k is an odd number

e−π̃1(ti+1−ti ) (π̄1(ti+1−ti ))
k
2

k
2 ! ,

k is an even number

for any k ∈ N+ ∪ {0}.
Proof Let N1(ti+1, ti ) denote the numbers of switches from false alarm on time
interval [ti , ti+1). In the next, we will complete the proof by considering the following
two cases: N (ti+1, ti ) = 2k + 1 and N (ti+1, ti ) = 2k, where k ∈ N+ ∪ {0}. From the
Assumption 3.1, one can obtain N1(ti+1, ti ) = 2k+1−1

2 = k in the first case, while
N1(ti+1, ti ) = 2k

2 = k in the second case. Then, similar to Lemma 3.4, it follows

P{N (ti+1, ti ) = 2k + 1} ≤ P{N1(ti+1, ti ) = 2k + 1 − 1

2
}

≤ e−π̃1(ti+1−ti )
(π̄1(ti+1 − ti ))k

k! ,

and

P{N (ti+1, ti ) = 2k} ≤ P{N1(ti+1, ti ) = 2k

2
}

≤ e−π̃1(ti+1−ti )
(π̄1(ti+1 − ti ))k

k! .

Thus we complete the proof.

Lemma 3.6 For every i ≥ 0, the moment generating function E{es N (ti+1,ti )} of
N (ti+1, ti ) satisfies

E{es N (ti+1,ti )} ≤ (1 + es)e(e2s π̄1−π̃1)(ti+1−ti ),

for any s ≥ 0.

Proof Based on Lemma 3.5, we have

E{es N (ti+1,ti )} =
∑

k=1,3,5,...

esk P{N (ti+1, ti ) = k}

+
∑

k=0,2,4,...

esk P{N (ti+1, ti ) = k}
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≤
∑

k=1,3,5,...

eske−π̃1(ti+1−ti )
(π̄1(ti+1 − ti ))

k−1
2

k−1
2 !

+
∑

k=0,2,4,...

eske−π̃1(ti+1−ti )
(π̄1(ti+1 − ti ))

k
2

k
2 !

=
∑

k=0,1,2,...

es(2k+1)e−π̃1(ti+1−ti )
(π̄1(ti+1 − ti ))k

k!

+
∑

k=0,1,2,...

e2ske−π̃1(ti+1−ti )
(π̄1(ti+1 − ti ))k

k!
= (1 + es)e(e2s π̄1−π̃1)(ti+1−ti ).

Thus, we complete the proof.

Remark 3.6 Following the proof of Lemma 3.6, it follows

E{N (ti+1, ti )} ≤ (1 + 4π̄1ς)eπ̄1ς ,

where ς = supl∈N+{tl − tl−1}.
For the sake of simplifying expression, denote π̄0 � maxi∈S {|π0

i i |}, π̃0 �
maxi, j∈S {π0

i j }, π̄1 � maxi∈S {|π1
i i |}, π̃1 � maxi, j∈S {π1

i j }, π0 � mini∈S {|π0
i i |},

π1 � mini∈S {|π1
i i |}.

Theorem 3.3 Let ς = supl∈N+{tl − tl−1} < ∞. If there exist functions α1 ∈ K∞,
α2 ∈ CK ∞, μ ≥ 1, q > 1, λ1 > 0, λ2 ≥ 0, and V (x(t), t, r(t), r ′(t)) ∈ C 2,1(Rn ×
R+ × S × S ; R+), such that

(i). for all t ≥ t0 − τ ,

α1(|x(t)|) ≤ V (x(t), t, r(t), r ′(t)) ≤ α2(|x(t)|). (3.49)

(ii). there exists λ̄1 ∈ (0, λ1) such that

E{LV (ϕ(θ), t, r(t), r ′(t))}

≤

⎧⎪⎪⎨
⎪⎪⎩

−λ1 E{V (ϕ(0), t, r(t), r ′(t))},
if t ∈ Ts(tl, tl+1), l ∈ N+ ∪ {0}

λ2 E{V (ϕ(0), t, r(t), r ′(t))},
if t ∈ Ta(tl, tl+1), l ∈ N+

(3.50)

provided those ϕ ∈ L p
Ft

([−τ, 0]; R
n) satisfying that

min
i, j∈S

E{V (ϕ(θ), t + θ, i, j)} ≤ q E{V (ϕ(0), t, r(t), r ′(t))}, (3.51)
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where

eλ̄1τ ≤ q. (3.52)

(iii). for any i, j ≥ 1, the candidate function V (x(t), t, r(t), r ′(t)) satisfies

⎧⎪⎪⎨
⎪⎪⎩

E{V (x(t ′
i j ), t ′

i j , r(ti ), r ′(t ′
i j ))}

≤ μE{V (x(t ′
i j ), t ′

i j , r(ti ), r ′(t ′
i( j−1)))},

E{V (x(ti ), ti , r(ti ), r ′(ti ))}
≤ μE{V (x(ti ), ti , r(ti−1), r ′(t ′

(i−1)N (ti ,ti−1)
))}.

(3.53)

(iv). it exists λ̄2 ∈ (λ2,∞) such that

λ̄1 + λ̄2 − π0 < 0, (3.54)

for any i ≥ 1 and j = 1, 2, . . . , N (ti+1, ti ), with t ′
i0 = ti , t ′

0N (t1,t0)
= t ′

00 = t0, further,

the average dwell time τ ∗ satisfies τ ∗ >
ln(μM)

λ̄1
, where

M = (1 + μ)[ −π̄0

λ̄1 + λ̄2 − π0
+ (

−π̄0

λ̄1 + λ̄2 − π0
)

1
2 ] × e

[(μ2− π̄0

λ̄1+λ̄2−π0 )(N−1)−2]π̃1ς
,

(3.55)

then system (3.4) with u ≡ 0 is GASiP.

Proof According to (3.12) in Lemma 3.2, it has

D+E{V (x, t, r, r ′)} = E{LV (xt , t, r, r ′)}, (3.56)

for all t ∈ Ts(tl, tl+1) ∪ Ta(tl, tl+1), l ∈ N+.
On the one hand, from (3.49), using Jensen’s inequality,

E{V (x, t, i0, i0)} = E{V (x, t, r, r ′)} ≤ E{α2(|x |)} ≤ α2(E{‖ξ‖})

holds for any t ∈ [t0 − τ, t0].
In the following, we prove that when t ∈ [t0, t1),

E{V (x, t, i0, i0)} ≤ α2(E{‖ξ‖})e−λ̄1(t−t0). (3.57)

Suppose (3.57) is not true, i.e., there exists some t ∈ (t0, t1) such that

E{V (x(t), t, i0, i0)} > α2(E{‖ξ‖})e−λ̄1(t−t0).

Let t∗ = inf{t ∈ (t0, t1) : E{V (x(t), t, i0, i0)} > α2(E{‖ξ‖})e−λ̄1(t−t0)}. By the
continuity of V (x(t), t, i0, i0) and x(t) on [t0, t1), then we have t∗ ∈ [t0, t1) and
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E{V (x(t∗), t∗, i0, i0)} = α2(E{‖ξ‖})e−λ̄1(t∗−t0). Further, there exists a sequence {t̃n}
(t̃n ∈ (t∗, t1), for any n ∈ N+) with limn→∞ t̃n = t∗, such that

E{V (x(t̃n), t̃n), i0, i0} > α2(E{‖ξ‖})e−λ̄1(t̃n−t0). (3.58)

From the definition of t∗, we have

E{V (x(t∗ + θ), t∗ + θ, i0, i0)} ≤ e−λ̄1θ E{V (x(t∗), t∗, i0, i0)}
≤ q E{V (x(t∗), t∗, i0, i0)},

and further,

min
i, j∈S

E{V (x(t∗ + θ), t∗ + θ, i, j)} ≤ q E{V (x(t∗), t∗, i0, i0)},

for any θ ∈ [−τ, 0].
Then, based on (3.50) and (3.51), the following equation holds

D+E{V (x(t∗), t∗, i0, i0)} ≤ −λ1 E{V (x(t∗), t∗, i0, i0)}. (3.59)

Without loss of generality, we have

D+E{V (x(t∗), t∗, i0, i0)} ≤ −λ1 E{V (x(t∗), t∗, i0, i0)

< −λ̄1 E{V (x(t∗), t∗, i0, i0)}.

For h > 0 which is sufficient small, when t ∈ [t∗, t∗ + h], it follows

D+E{V (x(t), t, i0, i0)} ≤ −λ̄1 E{V (x(t), t, i0, i0)},

which means

E{V (x(t∗ + h), t∗ + h, i0, i0)} ≤ E{V (x(t∗), t∗, i0, i0)}e−λ̄1h,

and it is a contradiction of (3.58), thus (3.57) holds.
Combining the continuity of function V (x(t), t, i0, i0) and (3.53), we have

E{V (x(t1), t1, r(t1), r ′(t1))} ≤ μE{V (x(t1), t1, i0, i0)}
≤ μα2(E{‖ξ‖})e−λ̄1(t1−t0). (3.60)

On the other hand, let W (t, r̄(t)) = W (t, r(t), r ′(t)) =eλ̄1t V (x(t), t, r(t), r ′(t)).
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Then, for any l ∈ N+ and θ ∈ [−τ, 0], we have

D+E{W (t, r̄(t))} ≤

⎧⎪⎪⎨
⎪⎪⎩

−(λ1 − λ̄1)E{W (t, r̄(t))},
t ∈ Ts(tl, tl+1)

(λ̄1 + λ2)E{W (t, r̄(t))},
t ∈ Ta(tl, tl+1)

whenever (3.51) holds.
For any [s1, s2) ⊂ Ta(tl, tl+1), we claim that when t ∈ [s1, s2),

E{W (t, r̄(t))} ≤ e(λ̄1+λ̄2)(t−s1)E{W (s1, r̄(s1))}. (3.61)

Suppose (3.61) is not true, i.e., there exists some t ∈ [s1, s2) such that

E{W (t, r̄(t))} > e(λ̄1+λ̄2)(t−s1)E{W (s1, r̄(s1))}.

Similarly, set

t∗ = inf{t ∈ [s1, s2) : E{W (t, r̄(t))} > E{W (s1, r̄(s1))} × e(λ̄1+λ̄2)(t−s1)},

Then

E{W (t∗, r̄(t∗))} = E{W (s1, r̄(s1))}e(λ̄1+λ̄2)(t∗−s1).

Moreover, there is a sequence {t̃n}n∈N+ ∈ (t∗, s2) with limn→∞ t̃n = t∗ such that

E{W (t̃n, r̄(t̃n))} > E{W (s1, r̄(s1))}e(λ̄1+λ̄2)(t̃n−s1)

= E{W (t∗, r̄(t∗))}e(λ̄1+λ̄2)(t̃n−t∗). (3.62)

We further define U (t) = e−(λ̄1+λ̄2)t W (t, r̄(t)), then

D+E{U (t)} = −λ̄2e−λ̄2t E{V (x(t), t, r̄(t))} + e−λ̄2t D+E{V (x(t), t, r̄(t))}.

From the definition of t∗, for any θ ∈ [−τ, 0], it follows

E{W (t∗, r̄(t∗))}e(λ̄1+λ̄2)θ = E{W (s1, r̄(s1))}e(λ̄1+λ̄2)(t∗+θ−s1)

≥ E{W (t∗ + θ, r̄(t∗ + θ))},

which means

E{V (x(t∗ + θ), t∗ + θ, r̄(t∗ + θ))} ≤ E{V (x(t∗), t∗, r̄(t∗))}eλ̄2θ

≤ E{V (x(t∗), t∗, r̄(t∗))},
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and further

min
i, j∈S

E{V (x(t∗ + θ), t∗ + θ, i, j)} ≤ q E{V (x(t∗), t∗, r̄(t∗))}.

Then, from (3.50) and (3.51), we have

D+E{U (t∗)} ≤ −(λ̄2 − λ2)e
−λ̄2t∗

E{V (x(t∗), t∗, r̄(t∗))}.

Without loss of generality, it follows

D+E{U (t∗)} < 0.

Moreover, there exists a positive number h which is sufficient small such that

D+E{U (t)} ≤ 0, t ∈ [t∗, t∗ + h].

It then follows

E{W (t∗ + h, r̄(t∗ + h))} ≤ E{W (t∗, r̄(t∗))}e(λ̄1+λ̄2)h,

which is a contradiction of (3.62). Thus, (3.61) is true.
Furthermore, when t ∈ [s1, s2) ∈ Ts(tl, tl+1), repeating a similar analysis (similar

to the proof of (3.57)), one can obtain

E{W (t, r̄(t))} ≤ E{W (s1, r̄(s1))}. (3.63)

Combining (3.61) and (3.63), if the detection delay is non-zero, it holds

E{W (t, r̄(t))}

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e(λ̄1+λ̄2)(t−tl )E{W (tl , r̄(tl))}, t ∈ [tl, t ′
l1)

E{W (t ′
l1, r̄(t ′

l1))}, t ∈ [t ′
l1, t ′

l2)

e(λ̄1+λ̄2)(t−t ′
l2)E{W (t ′

l2, r̄(t ′
l2))}, t ∈ [t ′

l2, t ′
l3)

E{W (t ′
l3, r̄(t ′

l3))}, t ∈ [t ′
l3, t ′

l4)· · ·
e(λ̄1+λ̄2)(t−t ′

l(N (tl+1 ,tl )−1))

×E{W (t ′
l(N (tl+1,tl )−1), r̄(t ′

l(N (tl+1,tl )−1)))},
t ∈ [t ′

l(N (tl+1,tl )−1), t ′
l N (tl+1,tl )

)

E{W (t ′
l N (tl+1,tl )

, r̄(t ′
l N (tl+1,tl )

))},
t ∈ [t ′

l N (tl+1,tl )
, tl+1)

(3.64)

and in this case, N (tl+1, tl) is an even number. If the detection delay is equal to zero,
it also has
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E{W (t, r̄(t))}

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E{W (tl, r̄(tl))}, t ∈ [tl, t ′
l1)

e(λ̄1+λ̄2)(t−t ′
l1)E{W (t ′

l1, r̄(t ′
l1))}, t ∈ [t ′

l1, t ′
l2)

E{W (t ′
l2, r̄(t ′

l2))}, t ∈ [t ′
l2, t ′

l3)

e(λ̄1+λ̄2)(t−t ′
l3)E{W (t ′

l3, r̄(t ′
l3))}, t ∈ [t ′

l3, t ′
l4)· · ·

e(λ̄1+λ̄2)(t−t ′
l(N (tl+1 ,tl )−1))

×E{W (t ′
l(N (tl+1,tl )−1), r̄(t ′

l(N (tl+1,tl )−1)))},
t ∈ [t ′

l(N (tl+1,tl )−1), t ′
l N (tl+1,tl )

)

E{W (t ′
l N (tl+1,tl )

, r̄(t ′
l N (tl+1,tl )

))},
t ∈ [t ′

l N (tl+1,tl )
, tl+1)

(3.65)

and in this case, N (tl+1, tl) is an odd number.
Then, for any t ∈ [tl, tl+1), if [t ′

l N (t,tl )
, t ′

l(N (t,tl )+1)) ∈ Ts(tl, tl+1), we can obtain

E{W (t, r̄(t))} ≤ E{W (t ′
l N (t,tl ), r̄(t ′

l N (t,tl )))}
≤ E{μW (t ′

l N (t,tl ), r̄(t ′
l(N (t,tl )−1)))}

= E{μN (t,tl )−N (t,tl )+1}E{W (t ′
l N (t,tl ), r̄(t ′

l(N (t,tl )−1)))}
≤ E{μN (t,tl )−N (t,tl )+1}E{e(λ̄1+λ̄2)(t ′

l N (t,tl )
−t ′

l(N (t,tl )−1))

× W (t ′
l(N (t,tl )−1), r̄(t ′

l(N (t,tl )−1)))}
≤ E{μN (t,tl )−N (t,tl )+2}E{e(λ̄1+λ̄2)(t ′

l N (t,tl )
−t ′

l(N (t,tl )−1))}
× E{W (t ′

l(N (t,tl )−1), r̄(t ′
l(N (t,tl )−2)))}

≤ E{μN (t,tl )−N (t,tl )+2}E{e(λ̄1+λ̄2)(t ′
l N (t,tl )

−t ′
l(N (t,tl )−1))}

× E{W (t ′
l(N (t,tl )−2), r̄(t ′

l(N (t,tl )−2)))}
≤ E{μN (t,tl )−N (t,tl )+3}E{e(λ̄1+λ̄2)(t ′

l N (t,tl )
−t ′

l(N (t,tl )−1))}
× E{W (t ′

l(N (t,tl )−2), r̄(t ′
l(N (t,tl )−3)))}

≤ E{μN (t,tl )−N (t,tl )+3}E{e(λ̄1+λ̄2)(t ′
l N (t,tl )

−t ′
l(N (t,tl )−1))

× e(λ̄1+λ̄2)(t ′
l(N (t,tl )−2)−t ′

l(N (t,tl )−3))}
× E{W (t ′

l(N (t,tl )−3), r̄(t ′
l(N (t,tl )−3)))}

≤ · · ·
≤ E{μN (t,tl )}E{e(λ̄1+λ̄2)Ta(t−tl )}E{W (tl, r̄(tl))}.

And similarly, on the one hand, if [t ′
l N (t,tl )

, t ′
l(N (t,tl )+1)) ∈ Ta(tl, tl+1), it also follows

that
E{W (t, r̄(t))}
≤ E{μN (t,tl )}E{e(λ̄1+λ̄2)Ta(t−tl )}E{W (tl, r̄(tl))}.
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Then, without loss of generality, for any t ∈ [tl, tl+1), it holds

E{W (t, r̄(t))}
≤ E{μN (t,tl )}E{e(λ̄1+λ̄2)Ta(t−tl )}E{W (tl, r̄(tl))}
≤ E{μN (tl+1,tl )}E{e(λ̄1+λ̄2)Ta(tl+1−tl )}E{W (tl, r̄(tl))}. (3.66)

On the other hand, for any l ≥ 0, it holds (3.67a) and (3.67b).

E{e(λ̄1+λ̄2)Ta(tl+1−tl )}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3.67a)

E{e(λ̄1+λ̄2)(t ′
l1−t ′

l0)e(λ̄1+λ̄2)(t ′
l3−t ′

l2) · · · e(λ̄1+λ̄2)(t ′
l N (tl+1 ,tl )

−t ′
l(N (tl+1 ,tl )−1))︸ ︷︷ ︸

N (tl+1 ,tl )+1
2 , N (tl+1,tl ) is an odd number

}

(3.67b)

E{e(λ̄1+λ̄2)(t ′
l2−t ′

l1)e(λ̄1+λ̄2)(t ′
l4−t ′

l3) · · · e(λ̄1+λ̄2)(t ′
l N (tl+1 ,tl )

−t ′
l(N (tl+1 ,tl )−1))︸ ︷︷ ︸

N (tl+1,tl )
2 , N (tl+1,tl ) is an even number

}

Since

E{e(λ̄1+λ̄2)(t ′
l j −t ′

l j−1)} ≤
∫ ∞

0
e(λ̄1+λ̄2)t π̄0 e−π0t

dt

= −π̄0

λ̄1 + λ̄2 − π0
,

then, based on Lemma 3.6, let s = ln
√

−π̄0

λ̄1+λ̄2−π0 , we have

E{e(λ̄1+λ̄2)Ta(tl+1−tl )}

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E{( −π̄0

λ̄1+λ̄2−π0 )
N (tl+1,tl )+1

2 },
N (tl+1, tl) is an odd number

E{( −π̄0

λ̄1+λ̄2−π0 )
N (tl+1,tl )

2 },
N (tl+1, tl) is an even number

≤

⎧⎪⎪⎨
⎪⎪⎩

(
√

K 1 + K1)e(K1π̄
1−π̃1)(tl+1−tl ),

N (tl+1, tl) is an odd number
(1 + √

K 1)e(K1π̄
1−π̃1)(tl+1−tl ),

N (tl+1, tl) is an even number

(3.68)
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and without loss of generality,

E{e(λ̄1+λ̄2)Ta(tl+1−tl )} ≤ K2e(K1π̄
1−π̃1)(tl+1−tl ),

where K1 = −π̄0

λ̄1+λ̄2−π0 , K2 = K1 + √
K 1 = max{√K 1 + K1, 1 + √

K 1}.
In addition, if we let s = ln(μ), utilizing the Lemma 3.6 again, we can obtain

E{μN (tl+1,tl )} ≤ (1 + μ)e(μ2π̄1−π̃1)(tl+1−tl ).

Consequently, for any t ∈ [tl, tl + 1), it has

E{W (t, r̄(t))} ≤ K3ek1(tl+1−tl )E{W (tl , r̄(tl))}
≤ K3ek̄1(tl+1−tl )E{W (tl , r̄(tl))}
≤ M E{W (tl, r̄(tl))}, (3.69)

where K3 = (1 + μ)K2, k1 = (μ2 + K1)π̄
1 − 2π̃1, k1 = [(μ2 + K1)(N − 1) − 2]

π̃1, M = K3ek̄1ς .
From (3.53), for any t ≥ t1, iterating (3.69) from l = 1 to l = Nr (t, t1) + 1, we

can get

E{W (t, r̄(t))} ≤ M E{W (tNr (t,t1)+1, r̄(tNr (t,t1)+1))}
≤ μM2 E{W (tNr (t,t1), r̄(tNr (t,t1)))}
≤ μ2 M3 E{W (tNr (t,t1)−1, r̄(tNr (t,t1)−1))}
≤ · · ·
≤ μNr (t,t1)M Nr (t,t1)+1 E{W (t1, r̄(t1))},

which means for any t ≥ t1,

E{V (x(t), t, r(t), r ′(t))} ≤ μNr (t,t1)M Nr (t,t1)+1e−λ̄1(t−t1)

× E{V (x(t1), t1, r(t1), r ′(t1))}. (3.70)

Combining (3.60) and (3.70), we have

E{V (x(t), t, r(t), r ′(t))}
≤ μNr (t,t1)+1 M Nr (t,t1)+1e−λ̄1(t−t0)α2(E{‖ξ‖})
= (μM)Nr (t,t0)e−λ̄1(t−t0)α2(E{‖ξ‖})
≤ (μM)N0 e(−λ̄1+ ln(μM)

τ∗ )(t−t0)α2(E{‖ξ‖})
� β̃(E{‖ξ‖}, t − t0), (3.71)

for any t ≥ t1.
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Clearly, β̃(·, ·) ∈ K L if and only if τ ∗ >
ln(μM)

λ̄1
. For any ε ∈ (0, 1), take β̄ =

β̃

ε
∈ K L . Obviously, (3.71) also holds for t ∈ [t0, t1). Then, using Chebyshev’s

inequality and the above inequality, for all t ≥ t0,

P{V (x(t), t, r(t), r ′(t)) ≥ β̄(E{‖ξ‖}, t − t0)}
≤ E{V (x(t), t, r(t), r ′(t))}

β̄(E{‖ξ‖}, t − t0)
< ε.

Define β(r, s) = α−1
1 ◦ β̄(r, s), then

P{|x(t)| < β(E{‖ξ‖}, t − t0)} ≥ 1 − ε, ∀t ≥ t0,

where β(·, ·) ∈ K L .
Thus, we complete the proof.

Remark 3.7 In Theorem 3.3, the assumptions (3.49), (3.51), (3.52) and (3.53) are
common conditions in the stability analysis of switched stochastic time-delay systems
[15]. The condition (3.50) is also commonly employed in the asynchronous switched
deterministic systems [24], while (3.54) is set to restrict the conditions that the system
(3.4) needs to be satisfied under the existence of detection delay and false alarm.

Remark 3.8 For the detection of r(t), consider the following two special cases. First,
if Π0 and Π1 are set to ∞ and zero, respectively, there is no detection delay and
no false alarm in the mode detection, the closed-loop system is a synchronous case.
In this case, the conditions (3.50) and (3.54) hold almost surely. Second, if Π1

is set to zero while Π0 < ∞, the situation corresponds to only a detection delay,
and π0 < ∞, π̃1 = 0. Hypothesis (3.54) restricts the necessary condition that the
closed-loop systems need to be satisfied under this case.

Remark 3.9 According to (3.54), (3.55) and the average dwell time τ ∗ in
Theorem 3.3, one can see that the stability of the extended asynchronous switch-
ing systems can be guaranteed by a sufficient small mismatched time interval and a
sufficient large average dwell time. Given that the mismatched time interval in the
developed extended asynchronous switching framework is usually caused by: the
size of detection delay, the frequency of occurrence from false alarms, and the length
of the recovery time from a false mode, it is further explained as follows:

(i). For any fixed λ̄1, μ, ς and π̃1, a larger instability margin λ2 (or λ̄2) will
be compensated by a larger π0 and/or a larger average dwell time τ ∗. Since π0 =
mini∈S {|π0

i i |}, a larger π0 can be obtained by increasing |π0
i i | or decreasing π0

i i . The
larger |π0

i i | is the smaller of the detection delay for mode i is. Thus, when π0
i i increases,

if π̄0 = maxi,s∈S {π0
i j } is non-increase, a lager instability margin can be compensated

by a small detection delay; however if π̄0 is also increased, a larger average dwell
time τ ∗ will work, and the larger instability margin will be compensated by a smaller
detection delay and a larger average dwell time τ ∗.
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(ii). When λ̄1, μ and ς are fixed, and we assume π0 and π̄0 do not change through
a fixed constant π0

i j (i, j ∈ S ), then if the instability margin λ2 (or λ̄2) increases, M
will also increase. In this case, the larger M can be compensated by a smaller π̃1 or
a larger average dwell time τ ∗. Note that, a fixed constant π0

i j (i, j ∈ S ) means that
the time costs of the detection of true modes and the recovery from a false mode do
not change on the average. Given that π̃1 = maxi, j∈S {π1

i j }, π̃1 can be reduced by
decreasing π1

i j . Then the number of false alarms will decrease, and consequently, the
mismatched time from false alarms will also decrease, which can well compensate
the impact of larger instability margin.

Using the GASiP criterion in Theorem 3.3, one can further obtain the following
SISS conditions.

Theorem 3.4 Let ς = supl∈N+{tl − tl−1} < ∞. If there exist functions γ ∈ K , α1 ∈
V K ∞, α2 ∈ CK ∞, μ ≥ 1, q > 1, λ1 > 0, λ2 ≥ 0, λ̄1 ∈ (0, λ1), λ̄2 ∈ (λ2,∞),
and V (x(t), t, r(t), r ′(t)) ∈ C 2,1(Rn × R+ × S × S ; R+), such that hypotheses
(i), (iii), (iv) in Theorem3.3 hold, and

|ϕ(0)| ≥ γ (‖u‖[t0,∞)) ⇒ E{LV (ϕ(θ), t, r(t), r ′(t))}

≤

⎧⎪⎪⎨
⎪⎪⎩

−λ1 E{V (ϕ(0), t, r(t), r ′(t))},
t ∈ Ts(tl, tl+1), l ∈ N+ ∪ {0}

λ2 E{V (ϕ(0), t, r(t), r ′(t))},
t ∈ Ta(tl , tl+1), l ∈ N+

(3.72)

provided those ϕ ∈ L p
Ft

([−τ, 0]; R
n) satisfying that

min
i, j∈S

E{V (ϕ(θ), t + θ, i, j)} ≤ q E{V (ϕ(0), t, r(t), r ′(t))}, (3.73)

where

eλ̄1τ ≤ q. (3.74)

Then, system (3.4) is SISS.

Proof The proof is similar to Theorem 3.2 and is thus omitted.

Remark 3.10 Despite the similarities of Theorems 3.2 and 3.4 in this section, the
following essential differences are observed.

(i). Due to the existence of mismatched time interval which caused by detection
delays and false alarms, after the state trajectory enters the set B, there still exists
a chance to leave it. This complicates the system and is different from the normal
asynchronous case in Sect. 3.3.1.

(ii). The system in this section is deterministic switched system while the system
in Sect. 3.3.1 is Markovian switching.
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(iii). Section 3.3.1 considers only the detection delay while this work consider
both the non-zero detection delay and the false alarm. The inclusion of false alarm
makes the extended asynchronous switching model in Sect. 3.3.2 more practical.

Corollary 3.4 Under the assumptions in Theorem3.3 (Theorem3.4), if functions α1,
α2 satisfy α1(s) = c1s p, α2(s) = c2s p, where c1 and c2 are positive numbers, then
system (3.4) is pth moment exponentially stable with u ≡ 0 (pth moment ISS), for
all τ ∗ >

ln(μM)

λ̄1
.

3.4 Numerical Simulation

3.4.1 Asynchronous Switching

Hybrid stochastic delay system (HSDS), described by stochastic differential delay
equations with Markovian switching, is an important class of hybrid stochastic
retarded systems and is frequently used in engineering. In this section, the con-
clusions established in previous sections are applied to the stability analysis of a
class of HSDSs under asynchronous switching.

Consider the following hybrid system which has been discussed in [2] and the
reference therein.

⎧⎨
⎩

dx(t) = F(t, x(t), x(t − d1(t, r(t))), ν(t), r(t))dt
+G(t, x(t), x(t − d1(t, r(t))), ν(t), r(t))dB(t),

ν(t) = H(t, x(t), u(t), r ′(t)),
t ≥ 0 (3.75)

where d1 : R+ × S → [0, τ ] is Borel measurable while F , G and H are measurable
functions with F(t, 0, 0, 0, i) ≡ 0, G(t, 0, 0, 0, i) ≡ 0 and H(t, 0, 0, i) ≡ 0, for all
t ≥ 0 and i ∈ S . Let

F̄(t, x(t), x(t − d1(t, r(t))), u(t), r̄(t))

=F(t, x(t), x(t − d1(t, r(t))), H(t, x(t), u(t), r ′(t)), r(t))

Ḡ(t, x(t), x(t − d1(t, r(t))), u(t), r̄(t))

=G(t, x(t), x(t − d1(t, r(t))), H(t, x(t), u(t), r ′(t)), r(t))

and d1r(t)(t) = d1(t, r(t)).
We assume F̄ and Ḡ satisfy the local Lipschitz condition and the linear growth

condition. Then, the closed-loop system

dx(t) = F̄i j (t, x(t), x(t − d1i (t)), u(t))dt

+ Ḡi j (t, x(t), x(t − d1i (t)), u(t))dB(t) (3.76)

has unique solution on t ≥ −τ .
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In fact,wefind that system(3.76) is a special caseof (3.4)when f̄i j (t, ϕ(0), ϕ, u) =
F̄i j (t, ϕ(0), ϕ(−d1i (t)), u) and ḡi j (t, ϕ(0), ϕ, u) = Ḡi j (t, ϕ(0), ϕ(−d1i (t)), u) for
(ϕ, t, i, j) ∈ C ([−τ, 0]; R

n) ×R+ × S × S .
In the following, we use Theorem 3.2 to establish a useful stability criterion for

system (3.76).

Corollary 3.5 System (3.76) is SISS if there exist functions α1 ∈ K∞, α2 ∈
CK ∞, χ ∈ K , scalars μ ≥ 1, q > 1, λk > 0, λk1 > 0, k = 1, 2, 0 < ς < 1 and
V (x(t), t, r̄(t)) ∈ C 2,1(Rn × R+ × S × S ; R+), such that (3.17) and (3.21) hold
and for any l ∈ N+,

LV (x(t), y1(t), t, r̄(t)) ≤ −λ1V (x(t), t, r̄(t))

+ λ11 min
m,n∈S

{V (y1(t), t − d1il (t), m, n)}
+ χ(‖u‖[0,∞)), t ∈ [t̄2l−2, t̄2l−1), (3.77)

and

LV (x(t), y1(t), t, r̄(t)) ≤ λ2V (x(t), t, r̄(t))

+ λ21 min
m,n∈S

{V (y1(t), t − d1il (t), m, n)}
+ χ(‖u‖[0,∞)), t ∈ [t̄2l−1, t̄2l), (3.78)

where y1(t) = x(t − d1(t, r(t))); and there exists λ0 > 0, and λ̄1 = λ1 − qλ11 −
λ0 > 0, λ̄2 = λ2 + qλ21 + λ0 > 0, λ̂1 ∈ (0, λ̄1) and λ̂2 ∈ (λ̄2,∞) such that

eλ̂1τ ≤ q, (3.79)

and

μ2π̄e(λ̂1+λ̂2)d − π̃ ≤ ςλ̂1. (3.80)

Proof From (3.77) and (3.78), there exists 0 < λ0 < λ1 such that

|x(t)| ≥ χ̄ (‖u‖[0,∞)) ⇒ LV (x(t), y1(t), t, r̄(t))

≤ λ11 min
m,n∈S

V (y1(t), t − d1il (t), m, n)

− λ̃1V (x(t), t, r̄(t)), t ∈ [t̄2l−2, t̄2l−1), (3.81)

and
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|x(t)| ≥ χ̄(‖u‖[0,∞)) ⇒ LV (x(t), y1(t), t, r̄(t))

≤ λ21 min
m∈S

V (y1(t), t − d1il (t), m, n)

+ λ̃2V (x(t), t, r̄(t)), t ∈ [t̄2l−1, t̄2l), (3.82)

for any l ≥ 0, where λ̃1 = λ1 − λ0 > 0, λ̃2 = λ2 + λ0, and χ̄ (s) = λ−1
0 α−1

1 ◦ χ(s).
Clearly, χ̄(·) ∈ K . By using Fatou’s lemma, we have

|x(t)| ≥ χ̄ (‖u‖[0,∞)) ⇒ E{LV (x(t), y1(t), t, r̄(t))}
≤ −λ̄1 E{V (x(t), t, r̄(t))}, t ∈ [t̄2l−2, t̄2l−1),

and

|x(t)| ≥ χ̄(‖u‖[0,∞)) ⇒ E{LV (x(t), y1(t), t, r̄(t))}
≤ λ̄2 E{V (x(t), t, r̄(t))}, t ∈ [t̄2l−1, t̄2l),

whenever (3.19) holds.
Thus, all the conditions in the Theorem 3.2 are satisfied, which means system

(3.76) is SISS.

Corollary 3.6 Under the hypotheses of Corollary3.5, system (3.76) is also α1-
ISSiM. Specially, if α1(s) = c1s p, α2(s) = c2s p, where c1 and c2 are positive num-
bers, system (3.76) is pth moment ISS.

From the definitions of SISS and pth moment ISS, a SISS/pth moment ISS system
is GASiP/pth moment stable if the input u = 0. A pth moment ISS system is also
SISS. Therefore, in what follows we give only the conditions of the pth moment ISS
for a class of asynchronous HSDSs.

Consider the following system

dx(t) = [A(r(t))x(t) + B(r(t))ν(t) + f (t, x(t − d1(t, r(t))), r(t))]dt

+ [C(r(t))x(t) + g(t, x(t − d1(t, r(t))), r(t))]dB(t), (3.83)

where x(t) ∈ R
n , ν(t) ∈ L l∞. (For such system, the linear case with constant delay

has been discussed in [23] and the references therein.)
Assume that

| f (t, x(t − d1(t, r(t))), r(t))| ≤ ‖U1(r(t))‖|x(t − d1(t, r(t)))|
|g(t, x(t − d1(t, r(t))), r(t))| ≤ ‖U2(r(t))‖|x(t − d1(t, r(t)))|
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The mode-dependent controller is designed as

ν(t) = K (r ′(t))x(t) + u(t), (3.84)

where u(t) is the reference input.
For convenience, when r(t) = i , for any operate h, let hi denote h(i), and y1(t) =

x(t − d1i (t)). Then, the closed-loop system is

dx(t) = [Ai x(t) + Bi K j x(t) + Bi u(t)

+ fi (t, y1(t))]dt + [Ci x(t) + gi (t, y1(t))]dB(t). (3.85)

Taking V (x(t), r̄(t)) = xT (t)P(r̄(t))x(t), where P(r̄(t)) = PT (r̄(t)) > 0, if for
some εi > 0, i = 1, 2, 3, such that

⎡
⎣Σ111 Σ112 Σ113

∗ Σ122 Σ123

∗ ∗ Σ133

⎤
⎦ < 0, (3.86)

[
Σ211 Xii

∗ −λ11 Xii

]
< 0, (3.87)

⎡
⎣Σ311 Σ312 Σ313

∗ Σ322 Σ323

∗ ∗ Σ333

⎤
⎦ < 0, (3.88)

[
Σ411 Xi j

∗ −λ21 Xi j

]
< 0, (3.89)

where Xii = P−1
i i , Xi j = P−1

i j , Pii < β1 I and Pi j < β2 I , Σ111 = 1
β2πi i

I , Σ112 = Xii ,

Σ113 = 0, Σ122 = − 1
1+ε3

Xii , Σ123 = Ci Xii , Σ311 = − 1
π0

j i
Xii , Σ312 = Xi j , Σ313 =

0, Σ322 = − 1
1+ε3

Xi j , Σ323 = Ci Xi j , Σ133 = Xii AT
i + Ai Xii + 2Bi Yii + πi i Xii +

ε1 Bi BT
i + ε2 I ,

Σ211 = −(ε−1
2 ‖U1i‖2 I + (1 + ε−1

3 )β1‖U2i‖2 I )−1 I + λ1 Xii

Σ333 = Xi j AT
i + Ai Xi j + 2Bi K j Xi j − π0

j i Xi j + ε1 Bi BT
i + ε2 I − λ2 Xi j

Σ411 = −(ε−1
2 ‖U1i‖2 I + (1 + ε−1

3 )β2‖U2i‖2 I )−1 I

Let χ(s) = ε−1
1 s2, and if there exists μ ≥ 1, q > 1, λ0 > 0, such that (3.21),

(3.79), (3.80) hold, where λ̄1 = λ1 − qλ11 − λ0 > 0, λ̄2 = λ2 + qλ21 + λ0 > 0,
λ̂1 ∈ (0, λ̄1) and λ̂2 ∈ (λ̄2,∞).

Now we show that system (3.85) is 2nd moment ISS by use of Corollary 3.6. Let
V (x(t), r̄(t)) = xT (t)P(r̄(t))x(t), where P(r̄(t)) = PT (r̄(t)) > 0. For any i, j ∈
S , there exist β1 > 0 and β2 > 0 such that Pii < β1 I and Pi j < β2 I , where I is an
identity matrix with an appropriate dimension. Since Pi j = PT

i j > 0, there exists a
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low-triangular matrix Li j such that Pi j = Li j LT
i j . From [20], H F E + E T F T H T ≤

εH H T + ε−1 E T E , ∀ε > 0, when F F T ≤ I . Then, for any time-interval [t̄2l−1, t̄2l),
if there exists λ2 > 0, λ21 > 0,

LV (x(t), y1(t), i, j)

≤ xT (t)[AT
i Pi j + Pi j Ai + CT

i Pi j Ci + 2Pi j Bi K j

+π0
j i Pii − π0

j i Pi j ]x(t) + 2xT (t)Pi j Bi u(t)

+2xT (t)Pi j fi (t, y1(t)) + 2xT (t)CT
i Pi j gi (t, y1(t))

+gT
i (t, y1(t))Pi j gi (t, y1(t))

≤ xT (t)[AT
i Pi j + Pi j Ai + (1 + ε3)C

T
i Pi j Ci

+2Pi j Bi K j + π0
j i Pii − π0

j i Pi j + ε1 Pi j Bi BT
i Pi j

+ε2 Pi j Pi j ]x(t) + ε−1
1 uT (t)u(t)

+[ε−1
2 ‖U1i‖2 + (1 + ε−1

3 )β2‖U2i‖2]yT
1 (t)y1(t)

≤ λ2xT (t)Pi j x(t) + λ21 yT
1 (t)Pi j y1(t) + ε−1

1 |u(t)|2,

for any εi > 0, i = 1, 2, 3, 4.
Similarly, when t ∈ [t̄2l, t̄2l+1), if there also exists λ1 > 0, λ11 > 0, such that

LV (x(t), y1(t), y2(t), i, i)

≤ xT (t)[AT
i Pii + Pii Ai + (1 + ε3)C

T
i Pii Ci

+2Pii Bi Ki + πi i Pii − πi iβ2 I + ε1 Pii Bi BT
i Pii

+ε2 Pii Pii ]x(t) + ε−1
1 uT (t)u(t)

+[ε−1
2 ‖U1i‖2 + (1 + ε−1

3 )β1‖U2i‖2]yT
1 (t)y1(t)

≤ −λ1xT (t)Pii x(t) + λ11 yT
1 (t)Pii y1(t) + ε−1

1 |u(t)|2.

Then,

AT
i Pii + Pii Ai + (1 + ε3)C

T
i Pii Ci + 2Pii Bi Ki

+πi i Pii − πi iβ2 I + ε1 Pii Bi BT
i Pii + ε2 Pii Pii + λ1 Pii < 0, (3.90)

AT
i Pi j + Pi j Ai + (1 + ε3)C

T
i Pi j Ci + 2Pi j Bi K j

+π0
j i Pii − π0

j i Pi j + ε1 Pi j Bi BT
i Pi j + ε2 Pi j Pi j − λ2 Pi j < 0, (3.91)

ε−1
2 ‖U1i‖2 I + (1 + ε−1

3 )β1‖U2i‖2 I − λ11 Pii < 0, (3.92)

ε−1
2 ‖U1i‖2 I + (1 + ε−1

3 )β2‖U2i‖2 I − λ21 Pi j < 0. (3.93)

Using P−1
i i to pre- and post- multiply the left term of Eqs. (3.90) and (3.92) respec-

tively yields (3.86) and (3.87) hold. Similarly, using P−1
i j to pre- and post- multiply

the left term of Eqs. (3.91) and (3.93) respectively yields (3.88) and (3.89) hold.
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Thus, when let χ(s) = ε−1
1 s2, and if there exists μ ≥ 1, q > 1, λ0 > 0, such that

(3.53), (3.79), (3.80) and (3.86)–(3.89) hold. Then, according to Schur’s complement
and Corollary 3.6, system (3.85) is 2nd moment ISS.

For the stability analysis of given system (3.83) with asynchronous controller
(3.84), we first obtain μ, λ1, λ2, λ11 and λ21, which meet the conditions of Corol-
lary 3.6. If there exist ε1, ε2, ε3, β1 and β2, such that (3.86) and (3.87) hold, then we
can obtain Pii and the candidate controllers gains Ki , where i ∈ S . To verify the
effectiveness of the candidate controllers, we need to solve (3.88), (3.89) and (3.21).
If a feasible solution exists, then one can obtain Pi j and the admissible controllers
gains, where i, j ∈ S , j �= i .

Example 3.1 To demonstrate the effectiveness, we choose the parameters in system
(3.85) as A1 = [1.5, 1.5; 0,−3], A2 = [−0.5, 10; 15, 2.5], B1 = [−1, 2; 0,−1],
B2 = [−2, 1; 0, 2], C1 = [0.1, 0; 0, 0.1], C2 = [0.2, 0; 0.1, 0.2], and

f1(t, y1(t)) =
[

0.1 cos(t) 0.1
0 −0.1 sin(t)

]
y1(t),

f2(t, y1(t)) =
[

0.1(cos(t))2 0
0 0.1 sin(t)

]
y1(t),

g1(t, y1(t)) =
[

0.1 cos(t) 0
0 −0.1 sin(t)

]
y1(t),

g2(t, y1(t)) =
[

0.1 cos(t) 0
0.1 0.1(sin(t))2

]
y1(t).

Then, we have

| f1(t, y1(t))| ≤ ‖U11‖|y1(t)|, | f2(t, y1(t))| ≤ ‖U12‖|y1(t)|,
|g1(t, y1(t))| ≤ ‖U21‖|y1(t)|, |g2(t, y1(t))| ≤ ‖U22‖|y1(t)|,

where U11 = [0.1, 0.1; 0,−0.1], U12 = [0.1, 0; 0, 0.1], U21 = [0.1, 0; 0,−0.1],
U22 = [0.1, 0; 0.1, 0.1], and d11(t) = 0.05 cos(2t), d12(t) = 0.07 sin(t), d21(t) =
0.06 sin(t), d22(t) = 0.08 cos(t), τ = 0.08. Suppose that d = 0.2, Π = [−0.01,

0.01; 0.01,−0.01] and Π0 = [−70, 70; 50,−50].
According to above analysis, we choose ε1 = 0.1, ε2 = 0.6, ε3 = 1.8, λ1 =

20, λ2 = 18, λ11 = 1.5, λ21 = 1.5, β1 = 8, β2 = 3 and μ = 1.5. There exists λ0 =
0.01, q = 2, such that λ̄1 = 16.99, λ̄2 = 21.01.

Further, there exists λ̂1 = 5.097 ∈ (0, 16.99) and λ̂2 = 21.031 ∈ (21.01,∞),
such that 2 = q > eλ̂1τ = 1.5034. It’s not difficult to verify that (3.80) holds with
those parameters and ς = 0.99, π̄ = π̃ = 0.01.
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By solving (3.21), (3.86)–(3.89), one can obtain that

P11 =
[

0.1854 0
0 0.1854

]
, P12 =

[
0.2670 −0.0011

−0.0011 0.2703

]
,

P21 =
[

0.1943 0.0446
0.0446 0.5675

]
, P22 =

[
0.3826 0.0004
0.0004 0.3823

]
,

K1 =
[

14.0981 20.9377
−0.0706 9.7021

]
, K2 =

[
8.3710 9.5497
1.4964 −9.0793

]
.

The simulation results are shown in Figs. 3.2, 3.3, 3.4, 3.5 and 3.6. Among them,
Fig. 3.2 shows the Markovian switching signal which includes the real switching
signal and the detected switching signal with non-zero detection delay. The detected
switching signal also includes both the case which r ′(t) satisfies the conditions
of the Corollary 3.6 and the case which r ′(t) doesn’t satisfy the conditions of the
Corollary 3.6.

In the later case, the maximum detection delay is larger than 0.3, then we have
μ2π̄e0.3(λ̂1+λ̂2) − π̃ = 57.0534 > λ̂1. Moreover, in order to distinguish the r ′(t), we
let value 1.1 and 2.1 to express the mode 1 and mode 2 of r ′(t) which doesn’t satisfy
the conditions. Figure 3.3a shows the curve of Brownian motion w(t); Fig. 3.3b shows
the state trajectories under control input ν(t) ≡ 0, with initial data x0 = [3,−1.5].
Obviously, system (3.83) under ν(t) ≡ 0 is unstable, i.e., the open-loop system
is unstable. Figures 3.4, 3.5 and 3.6 show the stability of the closed-loop system,
also with initial data x0 = [3,−1.5]. Among them, Figs. 3.4a, 3.5a and 3.6a show
the stability under the strictly synchronous controller, where the reference input
u(t), respectively, equals to [0, 0]T , [3, 3]T and [3e−0.4t , 5e−0.7t ]T . The so-called
strictly synchronous controller means that the controller in (3.84) relies not on the

Fig. 3.2 The switching
signal r(t) and the detected
r ′(t)
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Fig. 3.3 Response curve of
w(t) and x(t)
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(a). Brownian motion w(t)
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Fig. 3.4 Response curve of
x(t) with reference input
u ≡ [0, 0]T
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the detected switching signal r ′(t) but on actual r(t). It can be inferred from them that
the system under synchronous switching is stable. On the other hand, Figs. 3.4b, 3.5b
and 3.6b show the stability under r ′(t) which satisfies the conditions of Corollary 3.6.

Obviously, the asymptotic stability and the input-to-state stability under r ′(t)
which satisfies the conditions can be guaranteed. But compared with Figs. 3.4a, 3.5a
and 3.6a, one can see that the mismatched controller which caused by the non-zero
detection delay has a great influence on the performance of the system. And moreover,
when r ′(t) doesn’t satisfy the conditions of Corollary 3.6, the system is unstable, as
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Fig. 3.5 Response curve of
x(t) with reference input
u ≡ [3, 3]T
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Fig. 3.6 Response curve of
x(t) with reference input
u = [3e−0.4t , 5e−0.7t ]T
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shown in Figs. 3.4c, 3.5c and 3.6c, which corresponds to Figs. 3.4b, 3.5b and 3.6b,
respectively. In addition, from Fig. 3.4a, b, we can see that the closed-loop system
(3.85) is asymptotically stable, which is in accordance with the assertion that an
ISS system is necessarily asymptotically stable. In Fig. 3.5a, b, due to the effect of
reference input u, the state x(t) will not converge to zero. But, it still remains bounded.
In Fig. 3.6a, b, since |u(t)| → 0 as t → ∞, system (3.85) is asymptotically stable,
which is also in accordance with Remark 3.1 in [2].
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3.4.2 Extended Asynchronous Switching

In this section the general Razumikhin-type theorems established in the previous
section will be extended to deal with the input-to-state stability of switched stochastic
nonlinear delay system (SSNLDS).

For a simulation purpose, consider a special class of switched stochastic perturbed
system

dx = [Ar x + Brν]dt + g(t, x(t − d(t)), r)dB, (3.94)

where g : R+ × R
n × S → R

n is unknown nonlinear function satisfying the local
Lipschitz condition and the linear growth condition, and ‖g(t, x(t − d(t)), i)‖2 ≤
‖Ui x(t − d(t))‖2, ‖ · ‖2 denotes the 2-norm, for any i ∈ S . Ui is known real constant
matrix, and 0 ≤ d(t) ≤ τ . Design ν(t) = Kr ′(t)x(t) + u(t). Then, the closed-loop
system is

dx = [Ar x + Br Kr ′ x + Br u]dt + g(t, x(t − d(t)), r)dB. (3.95)

From Corollary 3.4, one has the following corollary.

Corollary 3.7 System (3.95) is 2nd moment ISS for all τ ∗ >
ln(μM)

λ̂1
, where

M = (1 + μ)[ −π̄0

λ̂1 + λ̂2 − π0
+ (

−π̄0

λ̂1 + λ̂2 − π0
)

1
2 ] × e

[(μ2− π̄0

λ̂1+λ̂2−π0 )(N−1)−2]π̃1ς
,

(3.96)

if for all i, j ∈ S , there exist Xi j = X T
i j > 0, λ1 > 0, λ2 ≥ 0, λ10 ≥ 0, λ20 ≥ 0 such

that (3.97)–(3.100) hold, i.e.,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1 Xii Xii ··· Xii Xii ··· Xii Xii

∗ − 1
π1

i1
Xi1 0 ··· 0 0 ··· 0 0

∗ ∗ − 1
π1

i2
Xi2 ··· 0 0 ··· 0 0

∗ ∗ ∗
...

...
...

...
...

...
∗ ∗ ∗ ∗ − 1

π1
i(i−1)

Xi(i−1) 0 ··· 0 0

∗ ∗ ∗ ∗ ∗ − 1
π1

i(i+1)

Xi(i+1) ··· 0 0

∗ ∗ ∗ ∗ ∗ ∗
...

...
...

∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
π1

i N
Xi N 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, (3.97)
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[−λ10 Xii XiiU T
i

∗ − 2
β1

I

]
≤ 0, (3.98)

⎡
⎣Π2 Xi j Xi j

∗ − 1
π0

j i
Xii 0

∗ ∗ −Q−1

⎤
⎦ ≤ 0, (3.99)

[−λ20 Xi j Xi jU T
i

∗ − 2
β2

I

]
≤ 0, (3.100)

whereΠ1 = Ai Xii + Xii AT
i + Y T

ii BT
i + Bi Yii + ε1 Bi BT

i + (λ1 + π1
i i )Xii ,Π2 = Xi j AT

i +
Ai Xi j + Y T

i j BT
i + Bi Yi j + ε2 Bi BT

i − (λ2 + π0
j i )Xi j , ε1, ε2 > 0; there exist q > 1,

such that λ̄1 = λ1 − qλ10 > 0, and

eλ̂1τ < q, (3.101)

λ̂1 + λ̂2 − π0 < 0, (3.102)

where λ̄2 = λ2 + qλ20, λ̂1 ∈ (0, λ̄1) and λ̂2 ∈ (λ̄2,∞).

Proof Take V (x(t), t, i, j) = xT (t)Pi j x(t), Pi j = PT
i j > 0, for any i, j ∈ S . We

assume that there exist β1 > 0 and β2 > 0 such that Pii < β1 I and Pi j < β2 I , where
I is an identity matrix with appropriate dimension.

When t ∈ Ts(tl, tl+1), the system in (3.95) can be written as

dx = [(Ai + Bi Ki )x + Bi u]dt + g(t, x(t − d), i)dB. (3.103)

Then,

LV (x, y, t, i, i) = 2xT Pii [(Ai + Bi Ki )x + Bi u]

+ 1

2
gT (t, y, i)Pii g(t, y, i) +

N∑
k=1

π1
ik xT Pik x

≤ xT [(Ai + Bi Ki )
T Pii + Pii (Ai + Bi Ki ) + ε1 Pii Bi BT

i Pii

+
N∑

k=1

π1
ik Pik]x + ε−1

1 uT u + 1

2
β1gT (t, y, i)g(t, y, i)

≤ xT [(Ai + Bi Ki )
T Pii + Pii (Ai + Bi Ki ) + ε−1

1 ‖u‖2
2

+ ε1 Pii Bi BT
i Pii +

N∑
k=1

π1
ik Pik]x + 1

2
β1 yT U T

i Ui y

for some ε1 > 0, where y(t) = x(t − d(t)), by considering the fact that H F E +
ET F T H T ≤ εH H T + ε−1 E T E where ε > 0, F F T ≤ I .
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When t ∈ Ta(tl, tl+1), the system in (3.95) can be written as

dx = [(Ai + Bi K j )x + Bi u]dt + g(t, x(t − d), i)dB, (3.104)

where i, j ∈ S , and i �= j .
Similarly, for some ε2 > 0, we have

LV (x, y, t, i, j) ≤ xT [(Ai + Bi K j )
T Pi j + Pi j (Ai + Bi K j ) + ε2 Pi j Bi BT

i Pi j

+ π0
j i (Pii − Pi j )]x + 1

2
β2 yT U T

i Ui y + ε−1
2 ‖u‖2

2.

For any non-negative definite matrix Q, we have

|x | ≥
√

1

ελmin(Q)
‖u‖2 ⇒

{
LV (x, y, t, i, i) ≤ xT Φi i x + 1

2β1 yT U T
i Ui y,

LV (x, y, t, i, j) ≤ xT Φi j x + 1
2β2 yT U T

i Ui y,

where ε = min{ε1, ε2}, λmin(Q) denotes the minimal eigenvalue of matrix Q,

Φi i =(Ai + Bi Ki )
T Pii + Pii (Ai + Bi Ki )+ ε1 Pii Bi BT

i Pii +
N∑

k=1

π1
ik Pik + Q,

Φi j =(Ai + Bi K j )
T Pi j + Pi j (Ai + Bi K j )+ ε2 Pi j Bi BT

i Pi j + π0
j i (Pii − Pi j )+ Q.

Further, if

LV (x, y, t, i, i) ≤ xT Φi i x + 1

2
β1 yT U T

i Ui y ≤ −λ1xT Pii x + λ10 yT Pii y, (3.105)

and

LV (x, y, t, i, j) ≤ xT Φi j x + 1

2
β2 yT U T

i Ui y ≤ λ2xT Pi j x + λ20 yT Pi j y, (3.106)

and (3.53) and (3.73) hold, then based on Corollary 3.4, the conclusion is obtained.
Moreover, the conditions in (3.105) and (3.106) can be transformed into

(Ai + Bi Ki )
T Pii + Pii (Ai + Bi Ki ) + ε1 Pii Bi BT

i Pii

+
N∑

k=1

π1
ik Pik + Q + λ1 Pii ≤ 0, (3.107)
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1

2
β1U T

i Ui − λ10 Pii ≤ 0, (3.108)

(Ai + Bi K j )
T Pi j + Pi j (Ai + Bi K j ) + ε2 Pi j Bi BT

i Pi j

+ π0
j i (Pii − Pi j ) + Q − λ2 Pi j ≤ 0, (3.109)

1

2
β2U T

i Ui − λ20 Pi j ≤ 0. (3.110)

where i, j ∈ S and i �= j . Using P−1
i i to pre- and post- multiply the left term of

Eqs. (3.107) and (3.108) respectively and denoting Xii = P−1
i i , Xi j = P−1

i j , Yii =
Ki Xii and Yi j = K j Xi j yields (3.97) and (3.98).

Similarly, using P−1
i j to pre- and post- multiply the left term of Eqs. (3.109) and

(3.110) respectively yields (3.99) and (3.100). It is easy to get that (3.105) and (3.106)
hold, if the LMIs (3.97)–(3.100) hold. By taking proper λi and λi0, i = 1, 2, then there
exists q such that (3.101) and (3.102) hold. And further, by solving (3.97)–(3.100)
and (3.53), we can get the control gains Ki , i ∈ S .

Example 3.2 Take the following parameters for system (3.95):

A1 =
[

2 1
0 2

]
, B1 =

[−1 2
0 −1

]
, U1 =

[
0.1 0
0 0

]
,

A2 =
[

3 0
2 3

]
, B2 =

[−2 1
0 2

]
, U2 =

[
0 0.1

0.1 0

]
,

and

g(t, x̄(t), 1) = [0.1 cos(t)x1(t − d(t)), 0]T ,

g(t, x̄(t), 2) = [0.1 sin(t)x2(t − d(t)), 0.1x1(t − d(t))]T ,

where x̄(t) = x(t − d(t))d(t) = 0.2 sin(t) with τ = 0.2, and

Π0 =
[−100 100

80 −80

]
,Π1 =

[−0.2 0.2
0.2 −0.2

]
.

Then conditions (3.97), (3.98), (3.99) and (3.100) can be satisfied with λ1 = 10,
λ2 = 5.9182, λ10 = 0.1, λ20 = 0.1, ε1 = 7, ε2 = 2, μ = 1.38, β1 = 1.6956, β2 =
1.5955, Q = diag[0.1873, 0.1873], moreover,

P11 =
[

0.4491 −0.0001
−0.0001 0.4484

]
, P12 =

[
0.5877 −0.0005

−0.0005 0.5877

]
,

P21 =
[

0.5877 −0.0005
−0.0005 0.5880

]
, P22 =

[
0.4483 −0.0034

−0.0034 0.4509

]
,

K1 =
[

28.9391 7.3873
7.4055 9.2980

]
, K2 =

[
5.8994 −3.4292

−3.3107 −6.9532

]
.
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Take q = 7.5, then λ̄1 = 9.25 and λ̄2 = 6.6682, and further, conditions (3.101) and
(3.102) can be satisfied with λ̂1 = 9.1575, λ̂2 = 6.7349, π̄0 = 100, π̃1 = 0.2, π1 =
0.2 and π0 = 80. Take ς = 10, then M = 125.0134 and τ ∗ > 0.5624s. Then, system
(3.95) is 2nd moment ISS with average dwell time τ ∗ = 0.6s.

The first set of simulations are to verify the necessity of performing the research on
extended asynchronous switching. The simulation results are shown in Figs. 3.7, 3.8,
3.9 and 3.10. Among them, Fig. 3.7 shows the response trajectory of the Brownian
motion B(t), while Fig. 3.8 gives the state response curves of open-loop system
(3.94) with the true switching signal given in Fig. 3.9a, and obviously the open-
loop system is unstable. On the other hand, Figs. 3.9b and 3.10b present respectively
the state trajectories of closed-loop system under normal asynchronous switching
controller and extended asynchronous switching controller (note that, it does not
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curves of the open-loop
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satisfy the conditions of Corollary 3.7, because the average dwell time of the true
switching is set to be less than 0.5624s), where Figs. 3.9a and 3.10a give the switching
signals including the true one and the detected one respectively, with the same true
switching signal. Comparing the two results, one can find that the false alarm has a
great influence on the control performance, which further verifies the necessity and
importance of the extended asynchronous switching system.

To demonstrate the effectiveness of the results, the stability under several switch-
ing cases are considered, which include the strictly synchronous switching, the
desired extended asynchronous switching and the undesired extended asynchro-
nous switching. The simulation results are shown in Figs. 3.11, 3.12, 3.13, 3.14,
3.15, 3.16, 3.17, 3.18, 3.19, 3.20 and 3.21, with the Brownian motion B(t) given in

Fig. 3.9 State response
curves of the closed-loop
system under normal
asynchronous switching
controller with
u = [2e−0.5t , 4e−0.8t ]T
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Fig. 3.10 State response
curves of the closed-loop
system under extended
asynchronous switching
controller with
u = [2e−0.5t , 4e−0.8t ]T

0 2 4 6 8 10
−2

0

2

4

6

8
x 107

Time(Sec)

x(
t)

(b) the state

x
1
(x

0
=[1,−0.8]T)

x
2
(x

0
=[1,−0.8]T)

x
1
(x

0
=[−1,0.8]T)

x
2
(x

0
=[−1,0.8]T)

0 2 4 6 8 10
0.5

1

1.5

2

2.5

r(
t)

 a
nd

 r
’(

t)

(a) switching signal

r’(t)

r(t)

ybzhao@zjut.edu.cn



3.4 Numerical Simulation 89

Fig. 3.11 Switching signal
r(t) and the detected r ′(t)
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Fig. 3.12 The open-loop
state trajectory
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Fig. 3.7.Among them, Fig. 3.11 shows the the true switching signal and the detected
switching signal in the presence of detection delay and false alarm, where r(t)
is the true switching signal with the desired average dwell time τ ∗ = 0.6, r ′(t)
with mode 1.05 and mode 2.05 is the detected switching signal which refers to the
desired detected signal (the detection parameters are Π0 = [−100, 100; 80,−80],
Π1 = [−0.2, 0.2; 0.2,−0.2], all the conditions in Corollary 3.7 are satisfied), while
r ′(t) with mode 1.1 and mode 2.1 is the undesired detected one (here, we take
Π0 = Π1 = [−10, 10; 10,−10], thus (3.102) is not satisfied). Note that both the
mode 1.05 (mode 2.05) and mode 1.1 (mode 2.1) are referred the mode 1 (mode 2),
and these different values are to make clearer illustration.

Figures 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20 and 3.21 show the response
curve of the state trajectories when the average dwell time of the true switching signal
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Fig. 3.13 The closed-loop
state trajectory with
u = [0, 0]T under strictly
synchronous switching
controller
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Fig. 3.14 The closed-loop
state trajectory with
u = [0.5, 0.5]T under
strictly synchronous
switching controller
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Fig. 3.15 The closed-loop
state trajectory with
u = [2e−0.5t , 4e−0.8t ]T

under strictly synchronous
switching controller
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Fig. 3.16 The closed-loop
state trajectory with
u = [0, 0]T under extended
asynchronous switching
controller which satisfies the
desired conditions
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Fig. 3.17 The closed-loop
state trajectory with
u = [0.5, 0.5]T under
extended asynchronous
switching controller which
satisfies the desired
conditions
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is the desired one.Among them, Figs. 3.13, 3.14 and 3.15 show the stability under
strictly synchronous switching controller with different reference input respectively.

Similarly, Figs. 3.16, 3.17 and 3.18 show the stability under the desired extended
asynchronous switching controller,with reference input u = [0, 0]T , u = [0.5, 0.5]T

and u = [2e−0.5t , 4e−0.8t ]T respectively.
Figures 3.19, 3.20 and 3.21 are performed under the undesired asynchronous

switching, with different reference input respectively.
From Figs. 3.13, 3.14 and 3.15, the closed-loop system under strictly synchro-

nous switching controller is stable, in other words, one can claim that the designed
controller with considering both detection delay and false alarm (or the designed con-
troller under extended asynchronous controller) are also suitable for the synchronous
case. From Figs. 3.16, 3.17 and 3.18, one can find that the designed controller based
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Fig. 3.18 The closed-loop
state trajectory with
u = [2e−0.5t , 4e−0.8t ]T

under extended
asynchronous switching
controller which satisfies the
desired conditions
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Fig. 3.19 The closed-loop
state trajectory with
u = [0, 0]T under extended
asynchronous switching
controller which doesn’t
satisfy desired conditions
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on the proposed theory can stabilize the switched system with both non-zero detec-
tion delay and false alarm in detection. Compared to Figs. 3.13, 3.14 and 3.15, one
can also find that the asynchronous phenomenon caused by the non-zero detection
delay and false alarm has a great impact on the stability. This point can also be further
verified by Figs. 3.19, 3.20 and 3.21. From the results in above three cases, one may
claim that the stability of extended asynchronous switching can be guaranteed by a
sufficient small mismatched time interval, it is in accordance with Remark 3.9.
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Fig. 3.20 The closed-loop
state trajectory with
u = [0.5, 0.5]T under
extended asynchronous
switching controller that
doesn’t satisfy desired
conditions
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Fig. 3.21 The closed-loop
state trajectory with
u = [2e−0.5t , 4e−0.8t ]T

under extended
asynchronous switching
controller which doesn’t
satisfy the desired conditions
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3.5 Summary

This chapter, we have studied a class of HSRSs under asynchronous switching and
a class of SSNLRS under extended asynchronous switching.

On the one hand, we examine the stability of a class of HSRSs under asynchro-
nous switching, where the detection delay is modeled as a Markovian process. The
Razumikhin-type conditions are extended to the interval of asynchronous switching
before the matched controller is applied, which allows the Lyapunov functionals to
increase during the running time of subsystems. Motivated by asynchronous deter-
ministic switched systems, i.e., the stability of closed-loop systems can be guaranteed
by a sufficient large average-dwell time, by considering the properties of Markov
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94 3 System with Imprecise Jumping Parameters

process, the conditions of the existence of the admissible asynchronous controller
for global asymptotic stability and input-to-state stability are derived. It is shown
that the stability of the closed-loop systems can be guaranteed by a sufficient small
mode transition rate. The main results have also been applied to a class of hybrid
stochastic delay systems, and a numerical example has been provided to demonstrate
the effectiveness.

On the other hand, the input-to-state stability of a class of SSNLRS under extended
asynchronous switching is also investigated. The switchings of the system modes
and the desired mode-dependent controllers are asynchronous due to both detec-
tion delays and false alarms, whose feature is different from normal asynchronous
switching. Through some simplification, an extended asynchronous switching model
is developed. Then, based on Razumikhin-type theorem incorporated with average
dwell time approach, the sufficient criteria for asymptotic stability as well as input-
to-state stability are proposed. It is shown that the stability of such systems can
be guaranteed by a sufficient small mismatched time interval and a sufficient large
average dwell time. Finally, the importance and effectiveness of the stability criteria
for the extended asynchronous switching system are demonstrated by simulation
studies. In the future the developed results are expected to extend to systems with
non-exponential distributed detection delays, false alarms, and non-synchronous con-
troller.
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Chapter 4
Nonlinear Markovian Jump Systems

This chapter presents a direct robust adaptive control scheme for a class of nonlinear
uncertain Markovian jump systems with nonlinear state-dependent uncertainty. In
this scheme the prior knowledge of the upper bounds of the system uncertainties is
not required. Furthermore, the scheme is Lyapunov-based and guarantees the closed-
loop global asymptotic stability with probability one.

4.1 Introduction

Nonlinear jump systems with Markovian jumping parameters are modelled by a set
of nonlinear systems with a transition between multimodels determined by aMarkov
chain taking values in a finite set. In [15], the problem of output feedback stabiliza-
tion of a general nonlinear jump system was considered. In [14], a generic model for
jump detection and identification algorithms for a class of nonlinear jump systems
was proposed. The problem of disturbance attenuation with internal stability for non-
linear jump systems was discussed in [1]. Particularly, the problem of robust control
for uncertain nonlinear jump systems was considered in [5], where the designed
controller can guarantee the robust stability of the uncertain system, and a given
disturbance attenuation can also be achieved for all admissible uncertainties. How-
ever, to the best of our knowledge, to date, in the control literature of the nonlinear
uncertain jump systems even including robust stability results for the linear uncertain
jump systems, an implicit assumption is that the system uncertainties can take one of
the following types of uncertainties: norm bounded uncertainty, linear combination
and value bounded uncertainty, and the upper bounds of those uncertainties are gen-
erally supposed to be known, and such bounds are often employed to construct some
types of stabilizing state feedback controllers or some stability conditions [2–4, 6].
Actually, in the practical control problems, the bounds of the system uncertainties
might not be exactly known.
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98 4 Nonlinear Markovian Jump Systems

Fortunately, for such uncertain conditions on the deterministic nonlinear systems,
several types of robust adaptive state feedback controller have been proposed. In [9],
a robust adaptive controller is proposed to guarantee asymptotic robust stability
of the system states in the face of structured uncertainty with unknown variation
and structured parametric uncertainty with bounded variation. In [7], an adaptive
H∞ tracking control equipped with a VSC algorithm is proposed for a class of
nonlinear multiple-input-multiple-output uncertain systems. In [17], the proposed
adaptive robust continuous memoryless state feedback tracking controller with σ -
modification can guarantee that the tracking error decreases asymptotically to zero.
But for nonlinear uncertain Markovian jump systems, the similar results have not
been reported yet in the control literature.

In this chapter, we consider a direct robust adaptive control scheme for a class of
nonlinear uncertain Markovian jump systems with nonlinear state-dependent uncer-
tainty. The proposed scheme is Lyapunov-based and guarantees the global asymptotic
stability with probability one of the closed-loop systems. Compared with the exist-
ing work in the literature, our model provides a more realistic formulation which
allows the switching component to depend on the continuous states by considering
the x-dependent generator.

The chapter is organized as follows. In Sect. 4.2, the problem to be tackled is
stated and some standard assumptions are introduced. In Sect. 4.3, a robust adaptive
control scheme is proposed and the corresponding stability analysis is shown. A
numerical example is presented in Sect. 4.4 to support our theoretical results. Finally
this chapter will be concluded in Sect. 4.5 with a brief discussion of the results.

4.2 Description of Nonlinear Uncertain Jump System

Consider the following piecewise nonlinear uncertain jump system:

ẋ(t) = f (x(t), rt ) + Δ f (x(t), rt )

+ G(x(t), rt )
[
G0(x(t), rt ) + ΔG(x(t), rt )

]
u(t), (4.1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m1 is the control input. The parame-
ter rt is continuous-time Markov process on the probability space which takes
values in the finite discrete state-space S = {1, 2, · · · , N } with generator Π =
[πi j (x(t))]N×N (i, j ∈ S ) given by

P{r(t + Δ) = j |r(t) = i} =
{

πi j (x(t))Δ + o(Δ), i �= j
1 + πi i (x(t))Δ + o(Δ), i = j

(4.2)

where
lim
Δ→0

o(Δ)/Δ = 0 (Δ > 0),
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4.2 Description of Nonlinear Uncertain Jump System 99

πi j is the transition rate from i to j , and

πi i (x(t)) = −
∑

j �=i

πi j (x(t)) (πi j (x(t)) ≥ 0, j �= i),

and rt is assumed to be exactly known at each time.
The functions f (·, rt ),Δ f (·, rt ) : Rn → R

n with f (0, rt ) = 0, G(·, rt ) : Rn → R
n×m1and

G0(·, rt ),ΔG(·, rt ) : Rn → R
m1×m1 are smooth C∞(Rn × S ) functions of x(t) for

each value of rt ∈ S such that the system (4.1) is well defined, that is, the only equi-
librium point of the system (4.1) is x(t) = 0 for any initial state x(t0) and any admis-
sible control u(t), where C∞(Rn × S ) denotes all functions on Rn × S which are
infinitely continuously differentiable in x(t) for each rt ∈ S .

We have the following simplified assumptions.

Assumption 4.1 The matrix-valued function Π = [πi j (x(t))]N×N is continuous at
x(t) = 0, and it satisfies the linear growth condition as follows:

πi j (x(t)) ≤ πi j (0) + γi j ||x(t)||, i, j ∈ S (4.3)

where γi j is an unknown scalar satisfying

0 < γi j < +∞.

We further assume the information of the generator at x(t) = 0 (when the system
is stable), [πi j (0)]N×N , is always known.

Assumption 4.2 There exist unknown matrice M∗ ∈ R
m1×q1 , E∗ ∈ R

m1×q2 and
fixed functions L(·, rt ) : Rn → R

m1×m1 , N (·, rt ) : Rn → R
q1 , H(·, rt ) : Rn → R

m1×m1 ,

T (·, rt ) : Rn → R
q2×m1 with N (0, rt ) = 0, for each rt ∈ S such that

Δ f (x(t), rt ) = G(x(t), rt )L(x(t), rt )M
∗N (x(t), rt ), (4.4)

ΔG(x(t), rt ) = H(x(t), rt )E
∗T (x(t), rt ). (4.5)

Furthermore, the input gain matrix [G0(x(t), rt ) + ΔG(x(t), rt )] is positive (or
negative) definite for each rt ∈ S , i.e., there is a known bound λ(rt ) > 0 such that

⎧
⎨

⎩

G0(x(t), rt ) + ΔG(x(t), rt ) > λ(rt )I
or
G0(x(t), rt ) + ΔG(x(t), rt ) < −λ(rt )I

(4.6)

Remark 4.1 The assumption (4.6) may restrict the structure of the system. However,
it do fit for a class of controllable systems as indicated in [16] (see A8 in it).
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100 4 Nonlinear Markovian Jump Systems

Assumption 4.3 There exist unknown matrix K ∗ ∈ R
m1×p and fixed functions

Ĝ(·, rt ) : Rn → R
m1×m1 , F(·, rt ) : Rn → R

p, with F(0, rt ) = 0, such that the fol-
lowing nonlinear jump system

ẋ(t) = f (x(t), rt ) + G(x(t), rt )Ĝ(x(t), rt )K
∗F(x(t), rt )

� f ∗(x(t), rt ) (4.7)

is stochastically asymptotically stable (SAS).
And, there existV ∗(x(t), rt )∈ C 1(Rn × S ;R+) and continuous function l(·, rt ):

R
n → R

q3 with V ∗(0, rt ) = 0, l(0, rt ) = 0 such that

(i). for any rt = i ∈ S ,
a. lTi (x)li (x) > 0, For any x ∈ R

n, x �= 0
b. V ∗(x(t), i) is continuous and has bounded first derivatives with respect to x(t)

and t.
c. for ∀ x(t) �= 0, ( ∂V ∗

i (x(t))
∂x(t) )T Gi (x(t))GT

i (x(t))( ∂V ∗
i (x(t))
∂x(t) ) is invertible.

(ii). there exists β1(·), β2(·) ∈ K∞ such that

β1(||x(t)||) ≤ V ∗(x(t), rt ) ≤ β2(||x(t)||).
(iii). the following equations hold for all i ∈ S

(
∂V ∗

i (x(t))

∂x(t)
)T f ∗

i (x(t)) +
N∑

j=1

πi j (0)V
∗
j (x(t)) + lTi (x(t))li (x(t)) ≤ 0, (4.8)

where C 1(Rn × S ;R+) denote all nonnegative functions V (x(t), i) on R
n × S

which are continuously differentiable in x(t).
For the sake of simplicity, we denote the current regime by an index (e.g. fi (·)

stands for f (·, rt ) when rt = i ∈ S ).

Remark 4.2 This assumption is similar to the one in Theorem 2.1 in [16] except
the coupled term

∑N
j=1 πi j V ∗

j which is derived from the Markovian infinitesimal
generator L. Since we have assumed the new closed-loop system (4.7) is SAS, this
assumption is reasonable for the system [10, 11, 13], and the numerical example
provided later also demonstrates the rationality of this assumption.

4.3 Robust Adaptive Control for Nonlinear Uncertain
Jump Systems

In recent years, Deng Hua have established stochastic versions of the Lasalle The-
orem for stochastic system with state multiplicative noises [8, 12]. Following their
studies, we extend the dynamicmodel to jump systemwithMarkovian jumping para-
meter, and establishMarkovian jumping versions of the well-known Lasalle stability
theorem.
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Theorem 4.1 Consider the jump system

ẋ(t) = f (x(t), u(t), rt , t), (4.9)

where the definitions of x(t), rt , u(t) are the same as those in system (4.1).

If there exists a Lyapunov function V (x(t), rt , t) and K∞ functions α1(·), α2(·)
such that

(i). V (0, rt , t) = 0.
(ii). for a fixed rt = i , V (x(t), i, t) is continuous and has bounded first derivatives

with respect to x and t.
(iii). α1(||x(t)||) ≤ V (x(t), rt , t) ≤ α2(||x(t)||).
(iv). LV (x(t), rt , t) ≤ −W (x(t)), where W (·) : Rn → R is continuous and non-

negative.

Then there is a unique strong solution of (4.9) for all x0 ∈ R
n(x0 < ∞)

P{ lim
t→∞ W (x(t)) = 0} = 1. (4.10)

Proof Since we have assumed that the system state x(t) is continuous with respect to
time t , then α1(||x(t)||), α2(||x(t)||),W (x(t)), are all continuous functions of time
t . Then for any s > 0, we define the stopping time

τs = in f {t ≥ 0 : ||x(t)|| ≥ s}.

It is easy to obtain that:

• τs → ∞ with probability one when s → ∞
• 0 ≤ ||x(t)|| ≤ s when 0 ≤ t ≤ τs

Let ts = min{τs, t} for any t ≥ 0. The Dynkin’s formula shows that

E[V (x(ts), r(ts), ts)] ≤ V (x0, r0, 0) − E{
∫ ts

0
W (x(τ ))dτ }.

Consider the condition (iii) in Theorem4.1 we have

E[α1(||x ||)] ≤ α2(||x0||) − E{
∫ ts

0
W (x(τ ))dτ }. (4.11)

Since α1(·) is aK∞ function, then the left of Eq. (4.11) is nonnegative.
Thus

E{
∫ ts

0
W (x(τ ))dτ } ≤ α2(||x0||).

Since W (·) ≥ 0, letting s → ∞, t → ∞, and applying Fatou’s lemma yields
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E{
∫ ∞

0
W (x(τ ))dτ } ≤ α2(||x0||).

Hence the following two results hold with probability one:

∫ ∞

0
W (x(τ ))dτ < ∞, (4.12)

lim
t→∞ V (x(t), rt , t) exists and is finite. (4.13)

Then there must be a probability subspace (Ω,F , {Ft }t≥0, P) exists with prob-
ability one, in which (4.12) and (4.13) always hold. Next we need to proof that in
this probability subspace following limitation always holds:

lim
t→∞ W (x(t)) = 0. (4.14)

Since W (x(t)) is a continuous function of system state x(t) and time t, the rest
of the proof is the same as that of Theorem2.1 in [12] and it’s omitted here.

Now, let

Y �
[
Im1×m1 , Im1×m1 , · · · , Im1×m1

]
m1×q2m1

,

E∗∗ � diag
[
E∗1 , E∗2 , · · · , E∗q2 ]

,

where E∗i (t) denotes the i th column of E∗. Then

ΔG(x(t), rt ) = H(x(t), rt )Y E∗∗T (x(t), rt ).

From a practical perspective, the matrix E∗∗ represents the parameters of a phys-
ical plant, so E∗∗ can be assumed to be bounded, i.e., there exists a known compact
set [7]

Ω2 � {E∗(t) | E∗i T (t)E∗i (t) ≤ β, i = 1, 2, · · · , q2},

such that
E∗∗ ∈ Ω2.

Let
Ω3 � {E∗(t) | E∗i T (t)E∗i (t) ≤ β + c, i = 1, 2, · · · , q2},

where β > 0, c > 0 that can be arbitrarily specified by the designer.
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Let E(t), K (t), M(t), Z(t) denote the estimated value of E∗∗, K ∗, M∗ and
Z∗ = max

i, j∈S {γi, j } respectively. Then, the smooth projection algorithm with respect to

E(t) can be obtained as [16]:

Proj (E
i
(t),Φ i (rt ))

�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ i (rt ) − (‖Ei
(t)‖2−β)Φ iT (rt )E

i
(t)

c‖Ei
(t)‖2 E

i
(t),

i f ‖ E
i
(t) ‖2 > β and Φ i T

rt E
i
(t) > 0

Φ i (rt ), otherwise

(4.15)

i = 1, 2, · · · , q2.

For some smooth functions Φ i (rt ) which will be defined in Theorem 4.2. Then we
have the following result.

Theorem 4.2 Consider the nonlinear uncertain jump system (4.1) with the above
assumptions, let Q1 ∈ R

p×p, Q2 ∈ R
q1×q1 , Q3 ∈ R

q2×q2 be positive definite. Then
the adaptive feedback control law

u(t) =
{
u1, i f G00 is invertible
u2, i f G00 is not invertible

(4.16)

with

G00 = [G0(x(t), rt ) + H(x(t), rt )Y E(t)T (x(t), rt )],
u1 =

[
G0(x(t), rt ) + H(x(t), rt )Y E(t)T (x(t), rt )

]−1

× [
Ĝ(x(t), rt )K (t)F(x(t), rt ) − L(x(t), rt )M(t)N (x(t), rt )

]

−
[
G0(x(t), rt ) + H(x(t), rt )Y E(t)T (x(t), rt )

]−1 × u3, (4.17)

u2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε(rt)
f 0(x(t),rt ) f 0(x(t),rt )GT (x(t),rt )

∂V∗(x(t),rt )
∂x(t)

λ(rt )‖ f 0(x(t),rt )GT (x(t),rt )
∂V∗(x(t),rt

∂x(t) ‖ + ε(rt )
min
rt∈S

{λ(rt )}u3,

i f ‖ f 0(x(t), rt )GT (x(t), rt )
∂V ∗(x(t),rt )

∂x(t) ‖ �= 0
ε(rt )

min
rt∈S

{λ(rt )}u3, i f ‖ f 0(x(t), rt )GT (x(t), rt )
∂V ∗(x(t),rt )

∂x(t) ‖ = 0

(4.18)

u3 = ‖x(t)‖Z(t)
N∑

j=1

V ∗
j (x)G

T
i (x(t))(

∂V ∗
i (x(t))

∂x(t)
)

×
[
(
∂V ∗

i (x(t))

∂x(t)
)T Gi (x(t))G

T
i (x(t))(

∂V ∗
i (x(t))

∂x(t)
)

]−1

, (4.19)

guarantees the global asymptotic stability with probability one of the systems. where
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f 0(x(t), rt ) = ‖ L(x(t), rt )M(t)N (x(t), rt ) − Ĝ(x(t), rt )K (t)F(x(t), rt ) ‖,

ε(rt ) =
⎧
⎨

⎩

−1, i f
[
G0(x(t), rt ) + H(x(t), rt )Y E∗∗T (x(t), rt )

]
> 0

1, i f
[
G0(x(t), rt ) + H(x(t), rt )Y E∗∗T (x(t), rt )

]
< 0

and K (t) ∈ R
m1×p, M(t) ∈ R

m1×q1 , E(t) ∈ R
m1×q2 and Z(t) ∈ R are estimated

parameters with update laws:

K̇ (t) = −1

2
G∗T(x(t), rt )GT (x(t), rt )

∂V ∗(x(t), rt )
∂x

F∗T(x(t), rt )Q−1
1 , (4.20)

Ṁ(t) = 1

2
L∗T(x(t), rt )GT (x(t), rt )

∂V ∗(x(t), rt )
∂x

N∗T(x(t), rt )Q−1
2 , (4.21)

Ż(t) = 1

2
‖x(t)‖

N∑

j=1

V ∗
j (x), (4.22)

Ė
i
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2 Proj (E

i
(t),Φ i (rt )),

i f [G0
i (x) + H(x(t), rt )Y E(t)T (x(t), rt )] is invertible

0, otherwise

(i = 1, 2, · · · ,m1, rt ∈ S )

, (4.23)

Φ(rt ) � Y T HT (x(t), rt )G
T (x(t), rt )(

∂V ∗

∂x
)uT T T (x(t), rt ), (4.24)

Φ i (rt ), E
i
(t) denote the ith column of Φ(rt ) and E(t), respectively.

Proof Consider the Lyapunov function candidate

V (x(t), K (t), M(t), E(t), Z(t), rt )

= V ∗(x(t), rt ) + tr
[
K̃ (t)Q1 K̃

T (t)
]

+ tr
[
M̃(t)Q2M̃

T (t)
]

+ tr
[
Ẽ(t)Q3 Ẽ

T (t)
]

+ Z̃2,

(4.25)

where K̃ (t) � K (t) − K ∗, M̃(t) � M(t) − M∗, Ẽ(t) � E(t) − E∗∗, Z̃(t) � Z(t) − Z∗ denote
the estimated error.

Considering (4.7), we have (when rt = i, x(t) = x)
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LVi (x) = (
∂V ∗

i (x)

∂x
)T

{
f ∗
i (x) + Gi (x)Li (x)M

∗Ni (x)
}

+ (
∂V ∗

i (x)

∂x
)T Gi (x)[G0

i (x) + Hi (x)Y E∗∗Ti (x)]u

− (
∂V ∗

i (x)

∂x
)T Gi (x)Ĝi (x)K

∗Fi (x) + 2tr

[
K̃ (t)Q1 K̇

T
(t)

]

+ 2tr

[
M̃(t)Q2Ṁ

T
(t)

]
+ 2tr

[
Ẽ(t)Q3 Ė

T
(t)

]
+ 2Ż Z̃(t) +

N∑

j=1

πi j (x)V
∗
j (x)

(4.26)

Case I. When G0
i (x) + Hi (x)Y ETi (x) is invertible

LVi (x) = (
∂V ∗

i (x)

∂x
)T

{
f ∗
i (x) + Gi (x)Li (x)M

∗Ni (x)
}

+ (
∂V ∗

i (x)

∂x
)T Gi (x)[G0

i (x) + Hi (x)Y E(t)Ti (x)]u

− (
∂V ∗

i (x)

∂x
)T Gi (x)Hi (x)Y Ẽ(t)Tiu

− (
∂V ∗

i (x)

∂x
)T Gi (x)Ĝi (x)K

∗Fi (x) + 2tr

[
K̃ (t)Q1 K̇

T
(t)

]

+ 2tr

[
M̃(t)Q2Ṁ

T
(t)

]
+ 2tr

[
Ẽ(t)Q3 Ė

T
(t)

]
(4.27)

By taking (4.17) and (4.20)–(4.23) into account, the above equation is equal to

LVi (x) = (
∂V ∗

i (x)

∂x
)T

[
f ∗
i (x) − Gi (x)Li (x)M̃(t)Ni (x)

]

− (
∂V ∗

i (x)

∂x
)T Gi (x)Hi (x)Y Ẽ(t)Tiu + (

∂V ∗
i (x)

∂x
)T Gi (x)Ĝi (x)K̃ (t)Fi (x)

− tr

[
K̃ (t)Fi (x)(

∂V ∗
i (x)

∂x
)T Gi (x)Ĝi (x)

]

+ tr

[
M̃(t)Ni (x)(

∂V ∗
i (x)

∂x
)T Gi (x)Li (x)

]

+ 2Ż Z̃(t) − ‖x(t)‖Z(t)
N∑

j=1

V ∗
j (x) +

N∑

j=1

πi j (x)V
∗
j (x)

+ tr
[
Ẽ(t)diagT

[
Proj (E

j
(t),Φ j

i )

]]
. (4.28)
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From (4.15) and the proof of Lemma 1 in [16] we get

tr
[
Ẽ(t)diagT

[
Proj (E

j
(t),Φ j

i )

]]
− (

∂V ∗
i

∂x
)T Gi (x)Hi (x)Y Ẽ(t)Tiu

= tr
[
Ẽ(t)diagT

[
Proj (E

j
(t),Φ j

i )

]]
− tr

[
Ẽ(t)T Y T HT

i (x)GT
i (x)

∂V ∗
i

∂x
uT T T

i

]

≤ 0 (4.29)

and E(t) ∈ Ω3 if E(0) ∈ Ω2.

On the other side,

(i) 2Ż Z̃(t) − ‖x(t)‖Z(t)
N∑

j=1

V ∗
j (x) +

N∑

j=1

πi j (x)V
∗
j (x)

≤ ‖x(t)‖
N∑

j=1

V ∗
j (x)(Z − Z∗) − ‖x(t)‖Z(t)

N∑

j=1

V ∗
j (x) +

N∑

j=1

πi j (0)V
∗
j (x) +

N∑

j=1

γi j‖x(t)‖V ∗
j (x)

≤
N∑

j=1

πi j (0)V
∗
j (x) (4.30)

(ii) − (
∂V ∗

i

∂x
)T Gi (x)Li (x)M̃(t)Ni (x) + tr

[
M̃(t)Ni (x)(

∂V ∗
i

∂x
)T Gi (x)Li (x)

]

= − tr

[
M̃(t)Ni (x)(

∂V ∗
i

∂x
)T Gi (x)Li (x)

]
+ tr

[
M̃(t)Ni (x)(

∂V ∗
i

∂x
)T Gi (x)Li (x)

]
= 0 (4.31)

(iii) (
∂V ∗

i

∂x
)T Gi (x)Ĝi (x)K̃ (t)Fi (x) − tr

[
K̃ (t)Fi (x)(

∂V ∗
i

∂x
)T Gi (x)Ĝi (x)

]

= tr

[
K̃ (t)Fi (x)(

∂V ∗
i

∂x
)T Gi (x)Ĝi (x)

]
− tr

[
K̃ (t)Fi (x)(

∂V ∗
i

∂x
)T Gi (x)Ĝi (x)

]
= 0 (4.32)

Taking the above results into (4.28), we have

LVi ≤ −lTi (x)li (x). (4.33)

Case II. When G0
i (x) + Hi (x)Y ETi (x) is not invertible
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LVi = (
∂V ∗

i

∂x
)T

{
f ∗
i (x) + Gi (x)Li (x)M

∗Ni (x)
}

+ (
∂V ∗

i

∂x
)T Gi (x)[G0

i (x) + Hi (x)Y E∗∗Ti (x)]u

− (
∂V ∗

i

∂x
)T Gi (x)Ĝi (x)K

∗Fi (x) + 2tr

[
K̃ (t)Q1 K̇

T
(t)

]

+ 2tr

[
M̃(t)Q2Ṁ

T
(t)

]
+ 2tr

[
Ẽ(t)Q3 Ė

T
(t)

]

+ 2Ż Z̃(t) +
N∑

j=1

πi j (x)V
∗
j (x)

≤ (
∂V ∗

i

∂x
)T

{
f ∗
i (x) − Gi (x)Li (x)M̃(t)Ni (x)

}

+ (
∂V ∗

i

∂x
)T Gi (x)[G0

i (x) + Hi (x)Y E∗∗Ti (x)]u

+ (
∂V ∗

i

∂x
)T Gi (x)Ĝi (x)K̃ (t)Fi (x)

+ (
∂V ∗

i

∂x
)T Gi (x)

[
Li (x)M(t)Ni (x) − Ĝi (x)K (t)Fi (x)

]

+ 2tr

[
K̃ (t)Q1 K̇

T
(t)

]
+ 2tr

[
M̃(t)Q2Ṁ

T
(t)

]

+ 2tr

[
Ẽ(t)Q3 Ė

T
(t)

]
+ 2Ż Z̃(t) +

N∑

j=1

πi j (x)V
∗
j (x)

where

(
∂V ∗

i

∂x
)T Gi (x)[G0

i (x) + Hi (x)Y E∗∗Ti (x)](u2− ε(rt )

min
rt∈S

{λ(rt)}u3)

+ (
∂V ∗

i

∂x
)T Gi (x)

[
Li (x)M(t)Ni (x) − Ĝi (x)K (t)Fi (x)

]

≤ (
∂V ∗

i

∂x
)T Gi (x)[G0

i (x) + Hi (x)Y E∗∗Ti (x)](u2− ε(rt )

min
rt∈S

{λ(rt)}u3)

+ ‖ f 0i (x)GT
i (x)

∂V ∗
i

∂x
‖� V .

From (4.18) we have:
when ‖ f 0i (x)GT

i (x) ∂V ∗
i

∂x ‖= 0,

V = 0;

when ‖ f 0i (x)GT
i (x) ∂V ∗

i
∂x ‖ �= 0,
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V = εi ( f
0
i (x)GT

i (x)
∂V ∗

i

∂x
)T [G0

i (x) + Hi (x)Y E∗∗Ti (x)]

× ( f 0i (x)GT
i (x) ∂V ∗

i
∂x )

λi ‖ f 0i (x)GT
i (x) ∂V ∗

i
∂x ‖

+ ‖ f 0i (x)GT
i (x)

∂V ∗
i

∂x
‖≤ 0. (4.34)

The discussion of the rest terms in Eq. (4.34) is the same as that of Case I, so we
have

LVi ≤ −lTi (x)li (x). (4.35)

That satisfies the conditions of Theorem 4.1, so

P{ lim
t→∞ lTi (x(t))li (x(t)) = 0} = 1.

Since lTi (x)li (x) > 0, x ∈ R
n, x �= 0 and li (0) = 0, we have

P{ lim
t→∞ x(t) = 0} = 1.

That is, the nonlinear uncertain jump system (4.1) is globally asymptotically stable
with probability one.

Remark 4.3 Since we have assumed that [G0(x(t), rt ) + ΔG(x(t), rt )] is positive
(or negative) definite for each rt ∈ S , robust controller u2 can globally be used to
dominate the performance of the controlled system, then the controller u1 seems
to be redundant. However, the adaptive estimation of the uncertain matrix E∗–the
perturbation termof the controller gain has not been taken into account in u2 thatmust
affect the asymptotic stability performance of the controlled system to some degree
at the beginning of the controller operation. So the application of u1 is necessary to
improve the performance of the controlled system, the numerical example provided
later also demonstrates the validity of this design.

4.4 Numerical Simulation

In this section, we consider the following numerical example. A nonlinear uncertain
jump system given by (4.1) in R2 with two regimes rt ∈ S = {1, 2}, where
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f1(x(t)) =
[

x1 + 10x2
x1 + x1x2 + x21

]
,G1(x(t)) =

[
0
1

1+x21

]

,

f2(x(t)) =
[

x2 − x1
100x1 − 40x2 + x21 + x22

]
,

Δ f1(x(t)) =
[

0
1

1+x21

]

x1 [2 1]

[
x1
x1x2

]
,

Δ f2(x(t)) =
[

0
1

1+x21+x21

]

x2 [2 1]

[
x2
x1x2

]
,

G2(x(t)) =
[

0
1

1+x21+x21

]

,G01 = 4 + x22 ,

G02 = −5 − x21 , ΔG1 = cos(x1)
[
δ3 δ4

] [
cos(x1)
sin(x2)

]
,

ΔG2 = cos(x2)
[
δ3 δ4

] [
cos(x2)
sin(x1)

]

and
Π = (πi j )(x(t))

=
[

−4 − 0.5(1 + sin(x2))|x1| 4 + 0.5(1 + sin(x2))|x1|
2 + |x2|

1+x21
−2 − |x2|

1+x21

]

with

L1(x(t)) = x1, L2(x(t)) = x2, M∗ = [2 1],
N1(x(t)) =

[
x1
x1x2

]
, N2(x(t)) =

[
x2
x1x2

]
,

H1(x(t)) = cos(x1), H2(x(t)) = cos(x2), E
∗ = [

δ3 δ4
]
,

T1(x(t)) =
[
cos(x1)
sin(x2)

]
, T2(x(t)) =

[
cos(x2)
sin(x1)

]
,

δ1, δ2, δ3, δ4 ∈ R are unknown with

δ1, δ3 ∈ [−2, 2
]
, δ2, δ4 ∈ [−1, 1

]
.

Since G01(x(t)) + ΔG1(x(t)) is positive definite, and G02(x(t)) + ΔG2(x(t)) is
negative definite, according to (4.6), we can take λ(rt ) as λ1 = 1, λ2 = 2.

Next, let
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Fig. 4.1 Response of system
state variable x = [x1 x2]T
with the only using of
u = u2

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

x 1 

x 2

Ĝ1(x(t)) = (1 + x21 ), Ĝ2(x(t)) = (1 + x21 + x22 ),

K ∗ = [−101 −10 −1 −1
]
,

F1(x(t)) = [
x1 x2 x1x2 x21

]T
,

F2(x(t)) = [
x1 x2 x21 x21

]T
, (4.36)

we have

f ∗
1 (x(t)) =

[
1 10

−100 −10

] [
x1
x2

]
,

f ∗
2 (x(t)) =

[−1 1
−1 −50

] [
x1
x2

]
.

So that V ∗
1 (x(t)), V ∗

2 (x(t)), l1(x(t)), l2(x(t)) satisfying (4.8) can be given by

V ∗
1 (x(t)) = xT (t)

[
6.7773 0.6115
0.6115 0.6621

]
x(t), (4.37)

V ∗
2 (x(t)) = xT (t)

[
8.2953 0.5664
0.5664 0.4356

]
x(t),

lT1 (x(t)) =
[
5.6737 0.5848
0.5848 2.3744

] [
x1
x2

]
,

lT2 (x(t)) =
[
9.7962 0.8674
0.8674 3.8343

] [
x1
x2

]
,
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Fig. 4.2 Response of system
state variable x = [x1 x2]T
with the combined using of
u = {u1, u2}

0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

 x 1 

x 2 

x1(0) = 2, x2(0) = −2, K (0) = [−5 −5 0 0
]
,

E(0) = [
0 0

]
, M(0) = [

1 0
]
, Z(0) = 1.

Simulation results corresponding to the following initial conditions and design
parameters are shown in Figs. 4.1 and 4.2.

It can be observed from Figs. 4.1 and 4.2 that both the adaptive robust controllers
u2 or u can indeed guarantee the asymptotic stability with probability one of the
closed-loop system. On the other hand, it can be known that the combined controller
u = {u1, u2} which considers the adaptive estimation of the controller perturbation
matrix E at the beginning of the controller operation has a rather better dynamical
performance.

4.5 Summary

In this chapter, we investigated the problem of robust and adaptive control for a
class of nonlinear uncertainMarkovian jump systemswith nonlinear state-dependent
uncertainty. For such systems, a direct memoryless adaptive robust state feedback
controller has been proposed. Based on the Lyapunov stability theory, it has been
shown that the nonlinear uncertain closed-loop Markovian jump systems resulting
from the proposed control schemes are globally asymptotically stable with proba-
bility one. However, an implicit assumption inherent in the above references is that
the current regime of the jumping parameter rt is available on-line, through a perfect
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observation channel, a possible direction for future work is to do the above research
under the condition of less knowledge of the current regime.
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Chapter 5
Practical Stability

This chapter investigatesstochastic systems with Markovian jump parameters and
time-varying delays in terms of their practical stability in probability and in the pth
mean, and the practical controllability in probability and in the pth mean, respec-
tively. Sufficient conditions are obtained by applying the comparison principle and
the Lyapunov function methods. Besides, for a class of stochastic nonlinear systems
with Markovian jump parameters and time-varying delays, existence conditions of
optimal control are discussed. For linear systems with quadratic performance index
and jumping weighted parameters, optimal control is also discussed.

5.1 Introduction

For Markovian jump systems, Lyapunov stability is now well known and has been
studied widely [9, 10, 22]. Whereas, in many real world applications, the systems
may be asymptotic unstable, but stay nearby a state with an acceptable fluctuation.
To deal with this situation, LaSalle and Lefschetz introduce the concept of practical
stability [5]. By means of examples, Lakshmikantham demonstrated that practical
stability is more suitable and desirable in practice [4]. Compared with the classi-
cal Lyapunov stability theory, practical stability can depict not only the qualitative
behavior but also the quantitative property, such as specific trajectory bounds and
specific transient behavior. Thus, it has been widely studied in both deterministic and
stochastic framework [5, 15, 16]. However, for stochastic nonlinear systems with
both jump parameters and time-delays, no much progress has been seen on practical
stability or practical stabilization.

For systems with Markovian jump parameters, the jump linear quadratic optimal
control problem has been considered in [3, 12] by using state feedback and output
feedback, respectively. A detailed discuss on optimal control of linear Markovian
jump systems was given in [11]. For systems with time-delays, there are also many
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114 5 Practical Stability

works on optimal control, including [2, 8]. However, for systems with both jump
parameters and time-delays, no much progress has been seen on optimal control.
This may be due to the coupling effect of the Markovian jump parameters and the
time-delays, which bring essential difficulty into the analysis.

In this chapter, we will focus on a class of general stochastic systems, which
are with not only jump parameters but also time-varying delays. For such class
of systems, the concepts and criteria of practical stability in the pth mean and in
probability, and practical controllability in probability and in the pthmean, are given.
In addition, optimal control for a class of stochastic nonlinear systemswith both jump
parameters and time-delays is studied and some sufficient conditions for the existence
of optimal control are given. Particularly, for linear systems, optimal control and the
corresponding index value are provided for a class of quadratic performance indices
with jumping weighted parameters.

The remainder of this chapter is organized as following: Sect. 5.2 provides
some notations and preliminary results. Section5.3 gives the comparison principle.
Section5.4 introduces the notations of practical stability in probability and in the pth
mean, and presents the corresponding criteria. Section5.5 introduces the concepts
of practical controllability in probability and in the pth mean, and gives the corre-
sponding criteria. Section5.6 focuses on the optimal control problem. Section5.7
includes some concluding remarks.

5.2 Markovian Jump Nonlinear Systems with Time Delays

Consider the following n-dimensional stochastic nonlinear systems with both
Markovian jump parameters and time-delays:

dx(t) = f (x(t), x(t − τ(t)), t, r(t))dt

+ g(x(t), x(t − τ(t)), t, r(t))dB(t) , t ≥ 0, (5.1)

where initial data {x(θ) : −2μ ≤ θ ≤ 0} = ξ ∈ C b
F0

([−2μ, 0];Rn), τ(t) : R+ →
[0, μ] is a Borelmeasurable function; r(t) is a continuous-time discrete-stateMarkov
process taking values in a finite set S = {1, 2, . . . , N } with transition probability
matrix P = {pi j } given by

pi j (Δ) = P{r(t + Δ) = j | r(t) = i}
=

{
πi jΔ + o(Δ), i �= j;
1 + πi iΔ + o(Δ), i = j,

Δ > 0.

Here πi j ≥ 0 is the transition rate from i to j (i �= j), and πi i = −∑N
j=1, j �=i πi j .

For any given i ∈ S , f : Rn × R
n × R+ × S → R

n and g : Rn × R
n × R+ ×

S → R
n×r are smooth enough to guarantee the system exist a unique solution

x(θ, t0, ξ), which satisfies E(supt0−μ≤θ≤t |x(θ, t0, ξ)|l) < ∞, ∀ t ≥ t0, l ≥ 0 [10];
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5.2 Markovian Jump Nonlinear Systems with Time Delays 115

B(t) is an r -dimensional Brownianmotion defined on the complete probability space
(Ω,F , {Ft }t≥0, P), withΩ being a sample space,F being a σ -field, {Ft }t≥0 being
a filtration and P being a probability measure.

For any givenV ∈ C 2,1(Rn × [−μ,+∞) × S ,R+), define an operatorLV from
R

n × [−μ,+∞) × S to R by

LV (x, t, i) = ∂V (x, t, i)

∂t
+ ∂V (x, t, i)

∂x
f (x, y, t, i)

+ 1

2
tr [gT (x, y, t, i)

∂2V (x, t, i)

∂x2
g(x, y, t, i)] +

N∑
j=1

πi j V (x, t, j),

5.3 Comparison Principle

Consider the following equation

σ̇ (t) = h(t, σ (t), σt ), σt0 = ψ, (5.2)

where σt = σt (θ) = σ(t + θ), θ ∈ [−μ, 0]; ψ ∈ C ([−μ, 0],R+); h : R × R+ ×
C ([−μ, 0],R+) → R is a continuous mapping, h(t, σ, v) is nondecreasing with
respect to v for fixed (t, σ ) ∈ R × R+, and h(t, 0, 0) = 0. Denote by σt (t0, ψ) =
σ(t + θ, t0, ψ), θ ∈ [−μ, 0], t ≥ t0, the solutions of (5.2) with an initial data σt0 =
ψ . Denote by σ̄ (t, t0, ψ) the largest solution [21] of (5.2) with σt0 = ψ .

Lemma 5.1 [6] Assume that there exists a V ∈ C 2,1(Rn × [−μ,+∞) × S ,R+)

such that for the function h in (5.2) and any solution x(t) = x(t, t0, ξ) of (5.1),
E{V (x(t), t, i)} exists for t ≥ t0 − μ, and

(A1)LV (x, t, i) ≤ h(t, V (x, t, i), Vt ), where Vt = V (x(t + θ), t + θ, r(t + θ)),

θ ∈ [−μ, 0], i ∈ S .
(A2) E{h(t, V (x, t, i), Vt )}≤h(t, E{V (x, t, i)}, E{Vt }), t ∈ R.
If E{V (x(t0 + s), t0 + s, r(t0 + s))} ≤ ψ(s), s ∈ [−μ, 0], r(t0 + s) ∈ S , then

E{V (x(t), t, i)} ≤ σ̄ (t, t0, ψ), t ≥ t0 − μ.

Remark 5.1 It is well known that, using the Lyapunov function method, one can get
the property of the solutionwithout solving the equation.Here, based on the condition
(A1) on the function V , we first construct the comparison system (5.2) which is a
time-delayed nonlinear system without stochastic characteristic. Then, we can get
the properties of V and the solutions of stochastic nonlinear systems (5.1). In other
words, one can easily get the properties of the solutions of a complicated system
(5.1) by combining Lyapunov function method and comparison principle.
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5.4 Practical Stability

For convenience, we shall introduce the following definitions:

Definition 5.1 System (5.1) is said to be practically stable in probability (PSiP),
if for any given δ > 0, there is a pair of positive numbers (λ, ρ), 0 < λ < ρ, such
that for some t0 ∈ R+ and any initial data ξ satisfying E{‖ξ‖} < λ, P{|x(t, t0, ξ)| ≥
ρ} < δ, ∀ t ≥ t0 − μ.

System (5.1) is said to be uniformly practically stable in probability (UPSiP), if
the system is PSiP for all t0 ∈ R+ uniformly.

Definition 5.2 Let positive number pair (λ, ρ), 0 < λ < ρ, and t0 be given. Then the
system (5.1) is said to be practically stable in the pth mean (PSpM) with respect to
(λ, ρ, t0), if for any given initial data ξ satisfying E{‖ξ‖p} < λ, E{|x(t, t0, ξ)|p} <

ρ, ∀ t ≥ t0 − μ.
System (5.1) is said to be uniformly practically stable in the pth mean (UPSpM)

with respect to (λ, ρ), if the system is PSpM for all t0 ∈ R+ uniformly.

As for the notions of practical stability for deterministic system (5.2), we can refer
to [4, 16].

Definition 5.3 A function ϕ(u) is said to belong to the classK if ϕ ∈ C (R+,R+),
ϕ(0) = 0 and ϕ(u) is strictly increasing in u. A function ϕ(u) is said to belong to the
class V K if ϕ belongs to K and ϕ is convex. A function ϕ(t, u) is said to belong
to the class CK if ϕ ∈ C (R+ × R+,R+), ϕ(t, 0) = 0 and ϕ(t, u) is concave and
strictly increasing in u for each t ∈ R

+.

The following theorems are on the criteria of practical stability.

Theorem 5.1 Under the notations of Lemma 5.1, suppose that (A1) and (A2) hold,
and there exist a function b ∈ K and a function a ∈ CK such that

b(|x(t)|) ≤ V (x(t), t, i) ≤ a(t, ‖xt‖), ∀ i ∈ S . (5.3)

If system (5.2) is practically stable with respect to (λ1, b(ρ1), t0), then system
(5.1) is PSiP.

Proof By (5.3) we have

0 ≤ E{b(|x(t + θ)|)} ≤ E{V (x(t + θ), t + θ, i)}
≤ E{a(t + θ, ‖xt+θ‖)}
≤ a(t + θ, E{‖xt+θ‖}).

Here Jensen inequality has been used to get the last inequality. Because the condi-
tion that comparison system (5.2) is practically stable with respect to (λ1, b(ρ1), t0),
we have that for any initial dataψ satisfying ‖ψ‖ < λ1, |σ(t, t0, ψ)| < b(ρ1), ∀ t ≥
t0 − μ. Therefore, σ̄ (t, t0, ψ) < b(ρ1), t ≥ t0 − μ.
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Noticing that for any δ ∈ (0, 1), there always exists ρ = ρ(δ) such that b(ρ1) ≤
δb(ρ), then σ̄ (t, t0, ψ) < δb(ρ), ∀ t ≥ t0 − μ. Choose ψ = a(t0 + θ, E{‖xt0+θ‖}),
θ ∈ [−μ, 0]. As a ∈ CK , there exists a λ such that for any xt0+θ satisfying
E{‖xt0+θ‖} < λ, 0 < ‖ψ‖ < λ1. This together with Lemma 5.1 gives

E{V (x(t), t, i)} ≤ σ̄ (t, t0, ψ) < δb(ρ), ∀ t ≥ t0 − μ. (5.4)

By Tchebycheff inequality and (5.4), we can obtain

P{V (x(t), t, i) ≥ b(ρ)} ≤ E{V (x(t), t, i)}/b(ρ) < δ, ∀ t ≥ t0 − μ,

which together with (5.3) leads to

P{|x(t, t0, ξ)| ≥ ρ} = P{b(|x(t, t0, ξ)|) ≥ b(ρ)}
≤ P{V (x(t), t, i) ≥ b(ρ)}
< δ, ∀ t ≥ t0 − μ.

Hence, system (5.1) is PSiP.

Theorem 5.2 Under the conditions of Theorem 5.1, if a(t, x) = a(x) and equation
(5.2) is uniformly practically stable with respect to (λ1, b(ρ)), then system (5.1) is
UPSiP.

Proof From the proof of Theorem 5.1, when a(t, x) = a(x), λ is independent of t0.
Thus, system (5.1) is UPSiP.

Theorem 5.3 Under the notations of Lemma 5.1, suppose that (A1) and (A2) hold,
and there exist a function b ∈ V K and a function a ∈ CK such that

b(|x(t)|p) ≤ V (x(t), t, i) ≤ a(t, ‖xt‖p), ∀ i ∈ S , (5.5)

and for given t0 and (λ, ρ), 0 < λ < ρ, a(t0 + s, λ) < b(ρ),∀ s ∈ [−μ, 0]. If equa-
tion (5.2) is practically stable with respect to (α, b(ρ), t0), then system (5.1) is PSpM
with respect to (λ, ρ, t0), where α = sups∈[−μ,0] a(t0 + s, λ).

Proof By (5.5) and Jensen inequality, for ∀ θ ∈ [−μ, 0] and ∀ t ≥ t0, we have

0 ≤ E{b(|x(t + θ)|p)} ≤ E{V (x(t + θ), t + θ, i)}
≤ E{a(t + θ, ‖xt+θ‖p)}
≤ a(t + θ, E{‖xt+θ‖p}),

which implies that E{V (x(t), t, i)} exists for all t ≥ t0 − μ. By Lemma 5.1, when
E{V (x(t0 + s), t0 + s, r(t0 + s))} ≤ ψ(s), ∀ s ∈ [−μ, 0], we have

E{V (x(t), t, i)} ≤ σ̄ (t, t0, ψ), ∀ t ≥ t0 − μ. (5.6)
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118 5 Practical Stability

Suppose that system (5.2) is practically stable with respect to (α, b(ρ), t0).
Then, for (α, b(ρ)), ‖ψ‖ < α implies σ̄ (t, t0, ψ) < b(ρ), ∀ t ≥ t0. Now we claim
that system (5.1) is PSpM with respect to (λ, ρ, t0), i.e., if E{‖φ‖p} < λ, then
E{|x(t, t0, φ)|p} < ρ, since, otherwise, there would exist t1 > t0 and a solution
x(t, t0, φ) of system (5.1) which satisfies that E{‖φ‖p} < λ and E{|x(t1, t0, φ)|p} =
ρ. Choose ψ(s) = a(t0 + s, E{‖φs‖p}), ∀ s ∈ [−μ, 0]. Then, by (5.5) we would
have

E{V (x(t0 + s), t0 + s, r(t0 + s))} ≤ ψ(s) < α, s ∈ [−μ, 0], ‖ψ‖ < α.

Consequently,

E{V (x(t), t, i)} ≤ σ̄ (t, t0, ψ) < b(ρ), ∀ t ≥ t0.

This results in the following contradictory

b(ρ) = b(E{|x(t1, t0, φ)|p}) ≤ E{V (x(t1), t1, r(t1))} < b(ρ).

Thus, system (5.1) is PSpM with respect to (λ, ρ, t0).

Theorem 5.4 Under the conditions of Theorem 5.3, if a(t, x) = a(x) and equation
(5.2) is uniformly practically stable with respect to (α, b(ρ)), then system (5.1) is
UPSpM with respect to (λ, ρ).

Proof From the proofs of Theorems 5.2 and 5.3, the result can be proved straight-
forward. Thus, the details are omitted here.

Remark 5.2 Different from the Lyapunov stability which focuses on the qualitative
behavior of systems, practical stability focuses on the quantitative properties, and so
is the PSiP except that the preassigned positive numbers (λ, ρ) are dependent on the
size of probability δ. In addition, both practical stability and PSiP do not require that
the systems have equilibria.

To illustrate the validity of Theorem 5.4, we give the following simple numerical
example.

Example 5.1 Let us consider a Markovian jump linear stochastic systems

dx = A(t, r(t))xdt + B(t, r(t))xdB, (5.7)

with the following specifications: r(t) is a continuous-time discrete-state Markov
process taking values in S = {1, 2} with transition rate matrix Π = {πi j } given

by Π =
(−1 1

2 −2

)
, and A(t, 1) = −1 + γ1(t), A(t, 2) = −2 + γ2(t), B(t, 1) =

B(t, 2) ≡ 1, where γ1 and γ2 are real-valued functions representing parameter dis-
turbances.
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5.4 Practical Stability 119

Taking Lyapunov function V (x) = x2 and applying infinitesimal generator along
with system (5.7), we have

{
LV (x) = −x2 + 2γ1(t)x2, for r(t) = 1;
LV (x) = −3x2 + 2γ2(t)x2, for r(t) = 2,

which impliesLV (x) ≤ −V (x) + |γ̄ (t)|V (x),where |γ̄ (t)|=max{|γ (t)|1, |γ (t)|2}.
Applying Theorem 5.4, we have the following conclusion:
Let λ and ρ (0 < λ < ρ) be given. If |γ̄ (t)| satisfies

∫ t

t0

(−1 + |γ̄ (τ )|)dτ < ln(
ρ2

λ2
), ∀ t ≥ t0, (5.8)

then system (5.7) is UPSpM (p=2) with respect to (λ, ρ).

Remark 5.3 From Example 5.1, we can find that: (i), due to a common Lyapunov
function taken, the transition rate matrix has no effect on the conclusion; (ii), the
inequality (5.8) can also be written as

∫ t

t0

|γ̄ (τ )|dτ < ln(
ρ2

λ2
) + (t − t0), ∀ t ≥ t0, (5.9)

from which, how the practical stability boundary affects the upper bound of the
disturbance can be seen; (iii), the UPSpM (p=2) of system (5.7) can be guaranteed
by (5.8) or (5.9), there is no need for the assumption of sign definiteness on the
infinitesimal generator of the Lyapunov function.

5.5 Practical Controllability

In this section, we will consider the practical controllability of a class of stochastic
nonlinear systems with jump parameters and time-delays.

Suppose the system is of the following form

dx(t) = f (x(t), x(t − τ(t)), t, r(t), u(t))dt

+ g(x(t), x(t − τ(t)), t, r(t))dB(t) , t ≥ t0, (5.10)

where u(t) is input, and is supposed to guarantee the existence and uniqueness of
the solution process.
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For convenience, we introduce the following definitions:

Definition 5.4 System (5.10) is said to be practically controllable in probability
γ (PCiP-γ ) with respect to (λ, β) if there exist finite time T and a control u(·)
defined on [t0, T ] such that all the solutions x(t) = x(t, t0, ξ, r0, u) that exit from
{x ∈ R

n : ‖ξ‖ < λ} enter into bounded region {x ∈ R
n : ‖xt‖ < β} at time T instant

with probability no less than 1 − γ .

Definition 5.5 System (5.10) is said to be practically controllable in the pth mean
(PCpM) with respect to (λ, β) if there exist a finite time T and a control u(·) defined
on [t0, T ] such that all the solutions x(t) = x(t, t0, ξ, r0, u) that exit from {x ∈ R

n :
E{‖ξ‖p} < λ} enter into the bounded region {x ∈ R

n : E{‖xt‖p} < β} at the time
T instant, i.e., E{‖ξ‖p} < λ implies E{‖xT ‖p} < β.

The following theorems are on the criteria of practical controllability.

Theorem 5.5 Assume that there exists a control law u for system (5.10) such that
the conditions of Theorem 5.1 are satisfied, and there exists a T = T (t0, ψ) such
that

σ̄ (T + s, t0, ψ) < γ b(β), ∀ s ∈ [−τ(T ), 0], (5.11)

where σ̄ (t, t0, ψ) is the maximum solution of system (5.2) with initial data (t0, ψ),
β ∈ (0, ρ) is a preassigned constant. Then, system (5.10) is PCiP-γ with respect to
(λ, β).

Proof By (5.11) and (5.4) we have

E{V (x(T + s), T + s, r(T + s))} ≤ σ̄ (T + s, t0, ψ) < γ b(β).

Then, by Tchebycheff inequality, we have

P{V (x(T + s), T + s, r(T + s)) ≥ b(β)}
≤ E{V (x(T + s), T + s, r(T + s))}/b(ρ) < γ,

which together with (5.3) leads to

P{|x(T + s, t0, ξ)| ≥ β}
= P{b(|x(T + s, t0, ξ)|) ≥ b(β)}
≤ P{V (x(T + s), T + s, r(T + s)) ≥ b(β)} < γ.

Thus, system (5.10) is PCiP-γ with respect to (λ, β).
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Theorem 5.6 Assume that there exists a control law u for system (5.10) such that
the conditions of Theorem 5.3 are satisfied, and there exists a T = T (t0, ψ) such
that

σ̄ (T + s, t0, ψ) < b(β), ∀ s ∈ [−τ(T ), 0], (5.12)

where σ̄ (t, t0, ψ) is the maximum solution of system (5.2) with initial data (t0, ψ),
β ∈ (0, ρ) is a preassigned constant. Then, system (5.10) is PCpM with respect to
(λ, β).

Proof By (5.12) and (5.6) we have

b(E{|x(T + s)|p}) ≤ E{V (x(T + s), T + s, r(T + s))}
≤ σ̄ (T + s, t0, ψ)

< b(β).

Thus, E{|x(T + s)|p} < β.

5.6 Optimal Control

This section focuses on the optimal stabilization of n-dimensional stochastic non-
linear systems with jump parameters and time-delays. Precisely, we will consider
system (5.10) and seek for a control law u to minimize the following performance
index

Jt0,ξ,r0(u) =E

{∫ ∞

t0

G(t, V (x(t, t0, ξ, r0, u), t, r(t)), x(t, t0, ξ, r0, u), r(t),

u(t, x(t, t0, ξ, r0, u))))dt
∣∣∣t0, ξ, r0

}
, (5.13)

where the function G satisfies

v̇ = −G(t, v, E{x(t)}, r(t), E{u(t)}), v(t0) = v0 ≥ 0, r(t0) = r0 (5.14)

and G ∈ C [R+ × R+ × R
n × S × R

m,R+], G(t, 0, E{x(t)}, r(t), E{u(t)}) ≡ 0,
is concave in v, E{x(t)} and E{u(t)}, and nondecreasing in v for fixed (t, E{x(t)},
r(t), E{u(t)}) ∈ [t0,∞) × R

n × S × R
m , nondecreasing in E{x(t)}, x(t) = x(t, t0,

ξ, r0, u). v̄(t, t0, v0, E{x(t0)}, r0) denotes the maximum solution of system (5.14)
with initial data v0, E{x(t0)}, r0.

To this end, we now introduce the set U of admissible controls.
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122 5 Practical Stability

Definition 5.6 By admissible control set U we mean the set consisting of such
control u(t, xt ) that has the following properties:

(i) u(t, xt ) is adapted to the σ -algebra generated by {xt , r(t), t ≥ t0} and
u(t, 0) = 0;

(ii) for any given initial value ξ ∈ C b
F0

([−2μ, 0];Rn) and r0 ∈ S , under u(t, xt )
the system (5.10) has a unique solution x(t) = x(t, t0, ξ, r0, u) and E{|x(t)|p} → 0,
t → ∞.

Theorem 5.7 Suppose that (5.5) holds. If

(i) LV (x(t), t, i) + G(t, V (x(t), t, i), x(t), i, u) ≥ 0, ∀ i ∈ S , ∀ t ≥ t0, ∀ u ∈
U , and, moreover, there exists a u0 = u0(t, xt ) such that

(ii) LV (x(t), t, i) + G(t, V (x(t), t, i), x(t), i, u0) ≡ 0, ∀ i ∈ S , ∀ t ≥ t0;
(iii) dx(t) = f (x(t), x(t − τ(t)), t,

r(t), u0(t))dt + g(x(t), x(t − τ(t)), t, r(t))dB(t), with xt0 = ξ and r(t0) =
r0, has a unique solution x0(t), t ≥ t0;

(iv) v̇ = −G(t, v, E{x0(t)}, r(t), E{u0(t)}) with v(t0) = v0 ≥ 0 is practically sta-
ble with respect to (α, b(ρ)), and has a maximum solution v̄(t) = v̄(t, t0, v0,
x0, r0) on [t0,∞) satisfying lim

t→∞ v̄(t, t0, v0, x0, r0) = 0, where (α, b(ρ)) is

given in Theorem 5.3,then (1) u0 ∈ U ; (2) Jt0,ξ,r0(u
0) = minu∈U Jt0,ξ,r0(u) =

E{V (x0, t0, r0)}, and (3) under u0, system (5.10) isPSpMwith respect to (λ, ρ).

Proof Let x0(t) = x(t, t0, ξ, r0, u0) denote the solution of system (5.10) under the
control u0 satisfying the condition (ii). Then, by the proof of Theorem 5.3, we know
that system (5.10) is PSpM with respect to (λ, ρ), and

E{V (x0(t), t, i)} ≤ v̄(t, t0, v0, x0, r0) → 0. (5.15)

Further, by (5.5) we have b(E{|x0(t)|p}) → 0, E{|x0(t)|p} → 0, t → ∞. There-
fore, (1) and (3) hold.

For any given admissible control u ∈ U , let x(t)= x(t, t0, ξ, r0, u) be the corre-
sponding solution of system (5.10). Then, by

E{V (x(t), t, r(t))} − E{V (x(t0), t0, r0)} = E{
∫ t

t0

LV (x(s), s, r(s))ds}

and condition (ii) we have

E{V (x0(t), t, r(t))} − E{V (x(t0), t0, r0)}
= E{

∫ t

t0

−G(s, V (x0(s), s, r(s)), x0(s), r(s), u0(s))ds
∣∣∣t0, ξ, r0}.
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Letting t → ∞, by (5.15) we have Jt0,ξ,r0(u
0) = E{V (x(t0), t0, r0)}.

Take arbitrarily a control u∗ ∈ U . Then, by (5.5) and condition (ii) of Definition
5.6 we have E{V (x∗(t), t, r(t))} → 0, t → ∞. This together with condition (i)
gives Jt0,ξ,r0(u

∗) ≥ E{V (x(t0), t0, r0)}. Thus, by the arbitrariness of u∗ ∈ U we can
arrive at 2).

Remark 5.4 From Theorem 5.7, we can get Hamilton–Jacobi–Bellman equation

min
u∈U

[LV (x, t, k) + G(t, V (x, t, k), x, k, u)] = 0, (5.16)

which is similar to the result in [14]. Whereas, the results we have got are valid for
more general nonlinear stochastic systems, especially, for those with bothMarkovian
jump parameters and time-delays.

Remark 5.5 In Theorem 5.7, condition (i) and (ii) guarantee the existence of opti-
mal control; condition (iii) guarantees the existence and uniqueness of the solutions
to system (5.10) under the optimal control u0; condition (iv) guarantees that, for
system (5.10) under the optimal control u0, the optimal index value Jt0,x0,r0(u

0) =
E{V (x0, t0, r0)}, further, by the inequality (5.5), the system (5.10) is PSpM with
respect to (λ, ρ).

The following example and corollary demonstrate the validity of our results.

Example 5.2 Consider the following stochastic nonlinear system

dx(t) = [ f (x(t), x(t − τ(t)), t, r(t))

+ B(x(t), x(t − τ(t)), t, r(t))u(t)]dt
+ g(x(t), x(t − τ(t)), t, r(t))dB(t),

with initial data {x(θ) : −2μ ≤ θ ≤ 0} = x0 ∈ C b
F0

([−2μ, 0];Rn), where x ∈ R
n ,

τ(t) : R+ → [0, μ] is aBorelmeasurable function; f ∈ C [R × R
n × R

n × S ,Rn],
B : R × R

n × R
n × S → R

n×m are continuous n × m matrices; u ∈ R
m(m ≤ n),

r(t) ∈ S = {1, 2, . . . , N } is a Markov chain.
Suppose that the corresponding control-free system

dx(t) = f (x(t), x(t − τ(t)), t, r(t))dt

+ g(x(t), x(t − τ(t)), t, r(t))dB(t),

is practically stable. Then, there exist V (x, t, i) ∈ C 2,1(Rn × R × S ,R+), which
satisfies

LV (x, t, i) = W (x, y, t, i) + ∂V (x, t, i)

∂x
B(x, y, t, i)u,
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where

W (x, y, t, i) = ∂V (x, t, i)

∂t
+ ∂V (x, t, i)

∂x
f (x, y, t, i)

+ 1

2
gT (x, y, t, i)

∂2V

∂x2
g(x, y, t, i) +

N∑
j=1

πi j V (x, t, j) ≤ 0.

Similar to the proof of Example 1 in [14], one can get that the control law mini-
mizing the optimal performance index

Jt0,x0,r0(u) = E

{∫ ∞

t0

[Q1(x, y, t, r(t)) + uT Q2(t, r(t))u
∣∣∣t0, x0, r0]dt

}

is

u0 = −1

2
Q−1

2 (t, r(t))BT (t)
∂V (x, t, r(t))

∂x
,

where

Q1(x, y, t, r(t)) = −W (x, y, t, r(t)) + [u0]T Q2(t, r(t))u
0,

the optimal index value is Jt0,x0,r0 = E{V (x(t0), t0, r0)}.
Example 5.3 We now solve the optimal control problem for a class of linear systems
with jump parameters and time-delays. Suppose the system is of the form

ẋ(t) = A(t, r(t))x(t) + B(t, r(t))x(t − h) + D(t, r(t))u(t), ∀ t ≥ t0, (5.17)

where x(t) ∈ R
n , u(t) ∈ R

m are state and input, respectively. {x(θ) : t0 − 2h ≤
θ ≤ t0} = x0 ∈ C b

F0
([−2h, 0];Rn) and r0 are initial function and initial Markov-

ian regime, respectively. The control objective is to seek for a control law u ∈ U to
minimize

J (t0, x0, u) = E

{∫ ∞

t0

{xT (t)Q(t, r(t))x(t) + uT (t)R(t, r(t))u(t)}dt
∣∣∣t0, x0, r0

}
,

(5.18)

where for any i ∈ S , matrices Q(t, i) and R(t, i) are positive semi-definite and
positive definite, respectively.
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Corollary 5.1 For optimal control problem (5.17)–(5.18), if r(t) = i at time t, then
the optimal control law is

u0(t) = −R−1(t, i)DT (t, i)Λ1(t, i)x(t)

− R−1(t, i)DT (t, i)
∫ 0

−h
Λ2(t, s, i)x(t + s)ds; (5.19)

and the corresponding index value is

V (x(t0), t0, r0) = xT (t0)Λ1(t0, r0)x(t0) + 2xT (t0)
∫ 0

−h
Λ2(t0, s, r0)x(t0 + s)ds

+
∫ 0

−h

∫ 0

−h
xT (t0 + s)Λ3(t0, r, s, r0)x(t0 + r) dr ds, (5.20)

whereΛ1(t, i),Λ2(t, s, i),Λ3(t, r, s, i), i ∈ S aren × n matrices,Λ1(t, i)are sym-
metric positive definite matrices, Λ3(t, r, s, i) = ΛT

3 (t, r, s, i), Λ2(t, s, i),
Λ3(t, r, s, i) are differentiable on t, r and s, and are the solutions of the follow-
ing coupled equations,

Λ̇1(t, i) + AT (t, i)Λ1(t, i) + Λ1(t, i)A(t, i) + Q(t, i) + 2Λ2(t, 0, i)

− Λ1(t, i)D(t, i)R−1(t, i)DT (t, i)Λ1(t, i) +
N∑
j=1

πi jΛ1(t, j) = 0, (5.21)

BT (t, i)Λ1(t, i) − ΛT
2 (t,−h, i) = 0, (5.22)

AT (t, i)Λ2(t, s, i) + ∂Λ2(t, s, i)

∂t
− ∂Λ2(t, s, i)

∂s

− Λ1(t, i)D(t, i)R−1(t, i)DT (t, i)Λ2(t, s, i) +
N∑
j=1

πi jΛ2(t, s, j) = 0, (5.23)

BT (t, i)Λ2(t, s, i) − Λ3(t, s,−h, i) = 0, (5.24)

∂Λ3(t, r, s, i)

∂t
− ∂Λ3(t, r, s, i)

∂r
− ∂Λ3(t, r, s, i)

∂s
+

N∑
j=1

πi jΛ3(t, r, s, j)

− ΛT
2 (t, s, i)D(t, i)R−1(t, i)DT (t, i)Λ2(t, r, i) = 0, (5.25)

where r, s ∈ [−h, 0].
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Proof Let

V (x(t), t, i) = xT (t)Λ1(t, i)x(t) + 2xT (t)
∫ 0

−h
Λ2(t, s, i)x(t + s)ds

+
∫ 0

−h

∫ 0

−h
xT (t + s)Λ3(t, r, s, i)x(t + r) dr ds,

for any t ≥ t0. Apply infinitesimal generator to V (x(t), t, i) and add xT (t)Q(t, i)
x(t) + uT (t)R(t, i)u(t), we get

L(t, x, u, i) = LV (x, t, i) + xT (t)Q(t, i)x(t) + uT (t)R(t, i)u(t),

where

LV (x, t, i) = xT (t)[2AT (t, i)Λ1(t, i) + Λ̇1(t, i) + 2Λ2(t, 0, i) +
N∑
j=1

πi jΛ1(t, j)]x(t)

+ xT (t − h)[2BT (t, i)Λ1(t, i) − 2ΛT
2 (t,−h, i)]x(t)

+ xT (t)
∫ 0

−h
[2AT (t, i)Λ2(t, s, i) + 2

∂Λ2(t, s, i)

∂t
− 2

∂Λ2(t, s, i)

∂s

+
N∑
j=1

πi jΛ2(t, s, j)]x(t + s)ds + xT (t − h)

∫ 0

−h
[2BT (t, i)Λ2(t, s, i)

− 2Λ3(t, s,−h, i)]x(t + s)ds +
∫ 0

−h

∫ 0

−h
xT (t + s)[∂Λ3(t, r, s, i)

∂t

− ∂Λ3(t, r, s, i)

∂r
− ∂Λ3(t, r, s, i)

∂s

+
N∑
j=1

πi jΛ3(t, r, s, j)]x(t + r)dsdr + 2uT (t)DT (t, i)Λ1(t, i)x(t)

+ 2uT (t)DT (t, i)
∫ 0

−h
Λ2(t, s, i)x(t + s)ds.

By some simple calculations, under the control (5.19),we can get ∂L(t,x,u,i)
∂u |u=u0 =

0, ∂2L(t,x,u,i)
∂u2 |u=u0 =2R(t, i)>0. This verifies the condition (i) of Theorem 5.7.

ybzhao@zjut.edu.cn



5.6 Optimal Control 127

Furthermore, under the conditions (5.21)–(5.25), we have

L(t, x, u0, i)

= xT (t)[2AT (t, i)Λ1(t, i)+Q(t, i)+ ṗ1(t, i)+2Λ2(t, 0, i) +
N∑
j=1

πi jΛ1(t, j)

− Λ1(t, i)D(t, i)R−1(t, i)DT (t, i)Λ1(t, i)]x(t) + xT (t − h)[−2ΛT
2 (t, −h, i)

+ 2BT (t, i)Λ1(t, i)]x(t) + xT (t)
∫ 0

−h
[2AT (t, i)Λ2(t, s, i) + 2

∂Λ2(t, s, i)

∂t

+
N∑
j=1

πi jΛ2(t, s, j) − 2Λ1(t, i)D(t, i)R−1(t, i)DT (t, i)Λ2(t, s, i)

− 2
∂Λ2(t, s, i)

∂s
]x(t + s) ds + xT (t − h)

∫ 0

−h
[2BT (t, i)Λ2(t, s, i)

− 2Λ3(t, s,−h, i)] × x(t + s)ds +
∫ 0

−h

∫ 0

−h
xT (t + s)[∂Λ3(t, r, s, i)

∂t

− ∂Λ3(t, r, s, i)

∂r
− ∂Λ3(t, r, s, i)

∂s
− ΛT

2 (t, s, i)D(t, i)R−1(t, i)DT(t, i)Λ2(t, r, i)

+
N∑
j=1

πi jΛ3(t, r, s, j)]x(t + r)dsdr ≡ 0, ∀ i ∈ S .

So, the condition (ii) of Theorem 5.7 is true.
Similar to [2, 3], we can show the existence and uniqueness of the solution of

the equations (5.21)–(5.25). Thus, the control (5.19) is well defined. Further, the
existence and uniqueness of the solution process to the system (5.17) under the
control (5.19) can be obtained directly from the Theorem 3.1 in [1]. This verifies the
condition (iii) of Theorem 5.7.

We now verify the condition (iv) of Theorem 5.7. From

v̇ = −G(t, v, x0(t), r(t), u0(t))

=
{ −[E{x0(t)}]T Q(t, r(t))E{x0(t)} − [E{u0(t)}]T R(t, r(t))E{u0(t)} < 0, v > 0;
0, v = 0,

we have lim
t→∞ v(t, t0, v0, E{x(t0)}, r0) = 0, v0 ≥ 0. Thus, the condition (iv) of The-

orem 5.7 is true.
Therefore, by Theorem 5.7 and Remark 5.5, (5.19) is an optimal control law of

the system (5.17), and (5.20) is the optimal control index value.

Remark 5.6 Theorem 5.7 and Corollary 5.1 consider the infinite time horizon case
of optimal control of stochastic systems with jump parameters and time-delays. For
the deterministic and finite time horizon case, it is referred to [2]. The results we
have obtained generalize the work of [2, 14] to stochastic systems with Markovian
jump parameters and time-delays.
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128 5 Practical Stability

Remark 5.7 Just as in [2, 13], we need to solve some coupled Riccati equations.
To this end, we can refer to some recent research papers based on LMIs or Riccati
equations, such as [7, 17–20] etc.

5.7 Summary

In this chapter, for stochastic nonlinear systems with both Markovian jump parame-
ters and time-delays, some new definitions and criteria of practical stability (control-
lability) are given, which lay the foundation for our further study, such as the design-
ing of the practical stabilization control law. Besides, a Hamilton-Jacobi-Bellman
equation is obtained, which have been used to get the optimal control law and the
optimal index value.
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Chapter 6
Networked Control System: A Markovian
Jump System Approach

This chapter proposes a packet-based control approach to networked control systems.
This approach takes advantage of the packet-based transmission of the network and
as a consequence the control law can be designed with explicit compensation for the
network-induced delay, data packet dropout and data packet disorder in both forward
and backward channels. Under theMarkov chain assumption of the network-induced
delay (data packet dropout as well), the sufficient and necessary conditions for the
stochastic stability and stabilization of the closed-loop system are obtained.

6.1 Introduction

NetworkedControl Systems (NCSs) are control systemswhose control loop is closed
via some form of communication network instead of connected directly as assumed
in conventional control systems [7]. These communication networks include the
control-oriented networks such as the control area network, DeviceNet, etc., but
more and more data networks that are not specifically optimized for real-time con-
trol purpose, like the Internet, have now been popular in NCSs. As is known, a com-
munication network inevitably introduces communication constraints to the control
systems, e.g., network-induced delay, data packet dropout, data packet disorder, data
rate constraint, etc. Despite the advantages of the remote and distribute control that
NCSs brings, the aforementioned communication constraints in NCSs present a great
challenge for conventional control theory [8, 10, 13, 14, 17, 19, 26].

The earlyworkonNCSshas beendonemainly from the control theory perspective.
Such conventional control theories as time delay system theory [3, 18, 28], stochastic
control theory [9, 11, 20, 23], switched system theory [12, 21, 27], have found their
applications toNCSs by, typically speaking,modeling the communication network as
one or several negative parameters (mostly a delay parameter) to the system, and then
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DOI 10.1007/978-981-10-3860-0_6

131

ybzhao@zjut.edu.cn



132 6 Networked Control System: A Markovian Jump System Approach

conventional methods in control theory can be used to design and analyse NCSs. In
the recent years, the so-called “co-design" approach to NCSs becomes popular. This
approach regards the design and analysis of NCSs as an inter-disciplinary problem
at the boundary of control, communication and computation. Thus the consequent
idea is to explore all the possible perspectives that may help the design and analysis
of NCSs but is not limited to control itself [4, 6, 16, 24, 25]. The co-design principle
has become one of the main streams in the future development of NCSs.

We here report a work on NCSs, within the co-design framework, by more effec-
tively using the packet-based transmission in NCSs. This characteristic means that
one data packet can encode multiple control signals, thus making it possible for us
to send a sequence of forward control predictions simultaneously, impossible in the
conventional system settings. Consequently by designing a comparison rule at the
actuator side, the packet-based control approach can explicitly compensate for the
communication constraints including the network-induced delay, data packet dropout
and data packet disorder simultaneously in both forward and backward channels. This
merit can not be achieved using conventional control approaches as in, e.g., [2, 23],
where the characteristics of the network hves not been specially considered.

We model the characteristics of the round trip delay as Markovian, and then
the closed-loop system is obtained as a Markovian jump system. Within the MJSs
framework, the sufficient and necessary condition for the stochastic stability and
stabilization of the closed-loop system with the packet-based control approach is
obtained. This is an example showing how MJSs can be useful in the area of NCSs.

The remainder of the chapter is organized as follows. Section6.2 presents the
problem under consideration, followed by the design of the packet-based control
approach in Sect. 6.3. For the derived closed-loop system, the stochastic stability and
stabilization results are obtained in Sect. 6.4, which is then verified numerically in
Sect. 6.5. Section6.6 concludes the chapter.

6.2 Description of Networked Control Systems

The NCS setup considered is shown in Fig. 6.1, where τsc,k and τca,k are the network-
induced delays in the backward and forward channels (called “backward channel
delay” and “forward channel delay” respectively hereafter) and the plant is linear in
discrete-time, and can be represented by

x(k + 1) = Ax(k) + Bu(k) (6.1)

with x(k) ∈ R
n , u(k) ∈ R

m , A ∈ R
n×n and B ∈ R

n×m . The full state information is
assumed to be available.

It is noticed that the forward channel delay τca,k is not available for the controller
when the control action is calculated at time k, since τca,k occurs after the determina-
tion of the control action, see Fig. 6.1. For this reason, when applying conventional
design techniques such as those in time delay systems to NCSs, the active compen-
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Fig. 6.1 The block diagram of a networked control system

sation for the forward channel delay can not be achieved. That is, the control law
using conventional control approach to NCSs is typically obtained as

u(k) = Kx(k − τ ∗
sc,k − τ ∗

ca,k), (6.2)

where τ ∗
sc,k and τ ∗

ca,k are the network-induced delays of the control action that is
actually applied to the plant at time k and the feedback gain K is fixed for all network
conditions. The fact that K is fixed implies that this conventional design technique
is conservative in the networked control environment, since it loses the capability of
actively compensating for the communication constraints while the system is up and
running.

A packet-based control approach is therefore designed with explicit consideration
of the communication constraints inNCSs, as detailed in the next section. The control
law based on this approach is obtained as follows, when no time-synchronization
among the control components is available (Algorithm 6.1),

u(k) = K (τ ∗
sc,k, τ

∗
ca,k)x(k − τ ∗

sc,k − τ ∗
ca,k), (6.3)

when with the time-synchronization (Algorithm 6.2), it is obtained as

u(k) = K (τ ∗
k )x(k − τ ∗

k ), (6.4)

where τ ∗
k = τ ∗

sc,k + τ ∗
ca,k . It is noted that using the control laws in (6.3) and (6.4),

the feedback gains can be designed with explicit consideration of the communi-
cation constraints, thus enabling us to actively compensate for the communication
constraints inNCSs by applying different feedback gains for different network condi-
tions, as is done in Sect. 6.4. In the following remark, we notice that other researchers
have also attempted to achieve such an advantage which however is not realizable in
practice since no supportive design method has been given.
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6.3 Packet-Based Control for NCSs

For the design of the packet-based control approach for NCSs, the following assump-
tions are required.

Assumption 6.1 The controller and the actuator (plant) are time-synchronized and
the data packets sent from both the sensor and the controller are time-stamped.

Assumption 6.2 The sum of the maximum forward (backward) channel delay and
the maximum number of consecutive data packet dropout (disorder as well) is upper
bounded by τ̄ca (τ̄sc accordingly) and

τ̄ca ≤ Bp

Bc
− 1, (6.5)

where Bp is the size of the effective load of the data packet and Bc is the bits required
to encode a single step control signal.

Remark 6.1 Time-synchronization is required for the implementation of the control
law in (6.3), which can be relaxed for the control law in (6.4), see Remark 6.4. With
time-synchronization among the control components and the time stamps used, the
network-induced delay that each data packet experiences can then be known by the
controller and the actuator upon its arrival.

Remark 6.2 In Assumption 6.2, the upper bound of the delay and dropout is only
meant for those received successfully; A dropped data packet is not treated as an
infinite delay. In light of the UDP (User Datagram Protocol) that is widely used
in NCSs, this upper bound assumption is thus reasonable in practice as well as
necessary in theory. Furthermore, the constraint in (6.5) is easy to be satisfied, e.g.,
Bp = 368 bit for Ethernet IEEE 802.3 frame which is often used [15], while an 8-bit
data (i.e., Bc = 8 bit) can encode 28 = 256 different control actions which is ample
for most control implementations; In this case, 45 steps of forward channel delay is
allowed by (6.5) which can actually meet the requirements of most practical control
systems.

The block diagram of the packet-based control structure is illustrated in Fig. 6.2.
It is distinct from the conventional control structure in two respects: the specially
designed packet-based controller and the corresponding Control Action Selector
(CAS) at the actuator side.

In order to implement the control laws in (6.3) and (6.4), we take advantage
of the packet-based transmission of the network to design a packet-based controller
instead of trying to obtain directly the current forward channel delay as this is actually
impossible in practice. As for the control law in (6.3), the packet-based controller
determines a sequence of forward control actions as follows and sends them together
in one data packet to the actuator,

U1(k|k − τsc,k) = [u(k|k − τsc,k) . . . u(k + τ̄ca|k − τsc,k)]T , (6.6)
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Fig. 6.2 Packet-based control for networked control systems

where u(k + i |k − τsc,k), i = 0, 1, . . . , τca,k are the forward control action predic-
tions based on information up to time k − τsc,k .

When a data packet arrives at the actuator, the designed CAS compares its time
stamp with the one already in CAS and only the one with the latest time stamp is
saved. Denote the forward control sequence already in CAS and the one just arrived
byU1(k1 − τca,k1 |k1 − τk1) andU1(k2 − τca,k2 |k2 − τk2) respectively, then the chosen
sequence is determined by the following comparison rule,

U1(k − τ ∗
ca,k |k − τ ∗

k ) =
{
U1(k2 − τca,k2 |k2 − τk2), if k1 − τk1 < k2 − τk2;
U1(k1 − τca,k1 |k1 − τk1), otherwise.

(6.7)

The comparison process is introduced because different data packets may expe-
rience different delays thus producing a situation where a packet sent earlier may
arrive at the actuator later, that is, data packet disorder. After the comparison process,
only the latest available information is used.

CAS also determines the appropriate control action from the forward control
sequence U1(k − τ ∗

ca,k |k − τ ∗
k ) at each time instant as follows

u(k) = u(k|k − τ ∗
sc,k − τ ∗

ca,k). (6.8)

It is necessary to point out that the appropriate control action determined by (6.8)
is always available provided Assumption 6.2 holds and (6.8) is equivalent to the
control law in (6.3) if state feedback is used, i.e.,

u(k) = u(k|k − τ ∗
sc,k − τ ∗

ca,k) = K (τ ∗
sc,k, τ

∗
ca,k)x(k − τ ∗

sc,k − τ ∗
ca,k). (6.9)

The packet-based control algorithm with the control law in (6.3) can now be
summarized as follows based on Assumptions 6.1 and 6.2.
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Algorithm 6.1 Packet-based control with the control law in (6.3)

Step1. At time k, if the packet-based controller receives the delayed state data x(k −
τsc,k), then, it

• Reads current backward channel delay τsc,k ;
• Calculates the forward control sequence as in (6.6);
• Packs U1(k|k − τsc,k) and sends it to the actuator in one data packet with time
stamps k and τsc,k .

If no data packet is received at time k, then let k = k + 1 and wait for the next
time instant.

Step2. CAS updates its forward control sequence by (6.7) once a data packet arrives;
Step3. The control action in (6.9) is picked out from CAS and applied to the plant.

In practice, it is often the case thatwe do not need to identify separately the forward
and backward channel delays since it is normally the round trip delay that affects
the system performance. In such a case, the simpler control law in (6.4) instead of
that in (6.3) is applied, for which the following assumption is required instead of
Assumption 6.2.

Assumption 6.3 The sum of the maximum network-induced delay and the maximum
number of continuous data packet dropout in the round trip is upper bounded by τ̄

and

τ̄ ≤ Bp

Bc
− 1. (6.10)

With the above assumption, the packet-based controller is modified as follows

U2(k|k − τsc,k) = [u(k − τsc,k |k − τsc,k) . . . u(k − τsc,k + τ̄ |k − τsc,k)]T . (6.11)

It is noticed that in such a case the backward channel delay τsc,k is not required
for the controller, since the controller simply produces (τ̄ + 1) step forward con-
trol actions whenever a data packet containing sensing data arrives. This relaxation
implies that the time-synchronization between the controller and the actuator (plant)
is not required and thus Assumption 6.1 can then be modified as follows.

Assumption 6.4 The data packets sent from the sensor are time-stamped.

The comparison rule in (6.7) and the determination of the actual control action in
(6.9) remain unchanged since both of them are based on the round trip delay τk and
in this case the control law with state feedback is obtained as follows, as presented
in (6.4),

u(k) = u(k|k − τ ∗
k ) = K (τ ∗

k )x(k − τ ∗
k ). (6.12)

The packet-based control algorithm with the control law in (6.4) can now be
summarized as follows based on Assumptions 6.3 and 6.4.
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Algorithm 6.2 Packet-based control with the control law in (6.4)

Step1. At time k, if the packet-based controller receives the delayed state data x(k −
τsc,k), then,

• Calculates the forward control sequence as in (6.11);
• Packs U2(k|k − τsc,k) and sends it to the actuator in one data packet.

If no data packet is received at time k, then let k = k + 1 and wait for the next time
instant.

Step2-Step3. remain the same as in Algorithm 6.1.

Remark 6.3 From the design procedure of the packet-based control approach it is
seen that the implementation of this approach requires only: (1) a modified controller
to produce the sequences of the forward control signals in (6.6) or (6.11) and (2)
the so designed CAS at the actuator side to compensate for the communication
constraints. In practice the latter could be a separate control component added to
the system, and the packet-based controller can be designed using any appropriate
methods that can give rise to a good systemperformance. Therefore, this approach can
be readily implemented in practice. Furthermore, the fact that conventional control
design methods can still be fitted in the packet-based control framework also makes
the proposed approach a universal solution to NCSs.

6.4 Stochastic Modeling and Stabilization

It is noticed that the control law in (6.3) equals that in (6.4) if K (τ ∗
k ) = K (τ ∗

sc,k, τ
∗
ca,k)

which is generally true in practice. Thus for simplicity only the closed-loop system
with the control law in (6.4) (i.e., Algorithm 6.2) is analyzed.

Let X (k) = [xT (k) xT (k − 1) · · · xT (k − τ̄ )]T , then the closed-loop systemwith
the control law in (6.4) can be written as

X (k + 1) = �(τ ∗
k )X (k), (6.13)

where�(τ ∗
k ) =

⎛
⎜⎜⎜⎜⎜⎝

A · · · BK (τ ∗
k ) · · · · · ·

In 0
In 0

. . .
...

In 0

⎞
⎟⎟⎟⎟⎟⎠ and In is the identity matrix with rank n.
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6.4.1 The MJS Model of the Packet-Based Control Approach
for NCSs

In NCSs, it is reasonable to model the round trip delay {τk; k = 0, 1, . . .} as a homo-
geneous ergodic Markov chain [23]. Here in order to take explicit account of the
data packet dropout, Markov chain {τk; k = 0, 1, . . .} is assumed to take values from
M = {0, 1, 2, . . . , τ̄ ,∞} where τk = 0 means no delay in round trip while τk = ∞
implies a data packet dropout in either the backward or the forward channel. Let the
transition probability matrix of {τk; k = 0, 1, . . .} be denoted by � = [λi j ] where

λi j = P{τk+1 = j |τk = i}, i, j ∈ M ,

P{τk+1 = j |τk = i} is the probability of τk jumping from state i to j , λi j ≥ 0 and

∑
j∈M

λi j = 1,∀i, j ∈ M .

The initial distribution of {τk; k = 0, 1, . . .} is defined by

P{τ0 = i} = pi , i ∈ M .

According to the comparison rule in (6.7), the round trip delay of the control
actions that are actually applied to the plant can be determined by the following
equation.

τ ∗
k+1 =

{
τ ∗
k + 1, if τk+1 > τ ∗

k ;
τ ∗
k − r, if τ ∗

k − r = τk+1 ≤ τ ∗
k .

(6.14)

Remark 6.4 The data packet dropout is explicitly considered by including the state
τk = ∞ into the state space�; The data packet disorder is also considered by (6.14):
In our stochastic model the network-induced delay, data packet dropout and data
packet disorder are all considered simultaneously. To the best knowledge of the
authors, there is no analogous analysis available in the literature to date.

Lemma 6.1 {τ ∗
k ; k = 0, 1, . . .} is a non-homogeneous Markov chain with state

space M ∗ = {0, 1, 2, . . . , τ̄ } whose transition probability matrix �∗(k) = [λ∗
i j (k)]

is defined by

λ∗
i j (k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
l1∈M ,l1≥i

πl1 (k)λl1 j∑
l1∈M ,l1≥i

πl1 (k)
, j ≤ i;

∑
l1∈M ,l1≥i

∑
l2∈M ,l2>i

πl1 (k)λl1l2∑
l1∈M ,l1≥i

πl1 (k)
, j = i + 1;

0, otherwise.

(6.15)
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whereπ j (k) = ∑
i∈M

piλ
(k)
i j and λ

(k)
i j is the k-step transition probability of τk from state

i to j .

Proof The comparison rule in (6.14) implies that the probability event {τ ∗
k = i} ∈

σ(τk, τk−1, . . . , τ1, τ0). Thus it is readily concluded that τ ∗
k is also a Markov chain

since τk as a Markov chain evolves independently. It is obvious that τ ∗
k can not be ∞

and thus its state space isM ∗ = {0, 1, 2, . . . , τ̄ }. Furthermore, noticing {τ ∗
k = i} =

{τ ∗
k−1 = i − 1, τk > i − 1} ∪ {τ ∗

k−1 ≥ i, τk = i} we have
1. If j ≤ i , then

P{τ ∗
k+1 = j |τ ∗

k = i} = P{τk+1 = j |τ ∗
k = i} = P{τk+1 = j |τk ≥ i}

=
∑

l1∈M ,l1≥i
πl1(k)λl1 j∑

l1∈M ,l1≥i
πl1(k)

2. If j = i + 1, then

P{τ ∗
k+1 = j |τ ∗

k = i} = P{τk+1 > i |τ ∗
k = i} = P{τk+1 > i |τk ≥ i}

=
∑

l1∈M ,l1≥i

∑
l2∈M ,l2>i

πl1(k)λl1l2∑
l1∈M ,l1≥i

πl1(k)

which completes the proof.

The following well-known result for homogeneous ergodic Markov chains [1] is
required for the stochastic stability analysis in this section.

Lemma 6.2 For the homogeneous ergodic Markov chain {τk; k = 0, 1, . . .} with
any initial distribution, there exists a limit probability distribution π = {πi ;πi >

0, i ∈ M } such that for each j ∈ M ,

∑
i∈M

λi jπi = π j ,
∑
i∈M

πi = 1 (6.16)

and
|πi (k) − πi | ≤ ηξ k (6.17)

for some η ≥ 0 and 0 < ξ < 1.

Proposition 6.1 For N1 that is large enough and some nonzero η∗ the following
inequality holds

|λ∗
i j (k) − λ∗

i j | ≤ η∗ξ k, k > N1, (6.18)
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where �∗ = [λ∗
i j ] with

λ∗
i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
l1∈M ,l1≥i

πl1λl1 j∑
l1∈M ,l1≥i

πl1
, if j ≤ i;

∑
l1∈M ,l1≥i

∑
l2∈M ,l2>i

πl1λl1l2∑
l1∈M ,l1≥i

πl1
, if j = i + 1;

0, otherwise.

(6.19)

Proof It can be readily obtained from (6.15), (6.17) and (6.19).

6.4.2 Stochastic Stability and Stabilization

The following definition of stochastic stability is used.

Definition 6.1 The closed-loop system in (6.13) is said to be stochastically stable
if for every finite X0 = X (0) and initial state τ ∗

0 = τ ∗(0) ∈ M , there exists a finite
W > 0 such that the following inequality holds,

E{
∞∑
k=0

||X (k)||2|X0, τ
∗
0 } < XT

0 WX0, (6.20)

where E{X} is the expectation of the random variable X .

Theorem 6.1 The closed-loop system in (6.13) is stochastically stable if and only if
there exists P(i) > 0, i ∈ M ∗ such that the following (τ̄ + 1) LMIs hold

L(i) =
∑
j∈M ∗

λ∗
i j�

T ( j)P( j)�( j) − P(i) < 0,∀i ∈ M ∗. (6.21)

Proof Sufficiency. For the closed-loop system in (6.13), consider the following
quadratic function given by

V (X (k), k) = XT (k)P(τ ∗
k )X (k). (6.22)

We have

E{ΔV (X (k), k)} = E{XT (k + 1)P(τ ∗
k+1)X (k + 1)|X (k), τ ∗

k = i} − XT (k)P(i)X (k)

=
∑
j∈M∗

λ∗
i j (k + 1)XT (k)�T ( j)P( j)�( j)X (k) − XT (k)P(i)X (k)

= XT (k)[
∑
j∈M∗

λ∗
i j (k + 1)�T ( j)P( j)�( j) − P(i)]X (k).
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From condition (6.21) we obtain

XT (k)[
∑
j∈M ∗

λ∗
i j�

T ( j)P( j)�( j) − P(i)]X (k) ≤ −λmin(−L(i))XT (k)X (k)

≤ −β||X (k)||2, (6.23)

where β = inf{λmin(−L(i)); i ∈ M ∗} > 0. Thus for k > N1,

E{ΔV (X (k), k)} = XT (k)[
∑
j∈M ∗

λ∗
i j (k + 1)�T ( j)P( j)�( j) − P(i)]X (k)

≤ XT (k)[
∑
j∈M ∗

λ∗
i j�

T ( j)P( j)�( j) − P(i)]X (k)

+ XT (k)
∑
j∈M ∗

|λ∗
i j (k + 1) − λ∗

i j |�T ( j)P( j)�( j)X (k)

≤ −β||X (k)||2 + η∗ξ k+1XT (k)
∑
j∈M ∗

�T ( j)P( j)�( j)X (k)

≤ (αη∗ξ k+1 − β)||X (k)||2,

where α = sup{λmax(�
T ( j)P( j)�( j)); j ∈ M ∗} > 0. Let N2 = inf{M; M ∈ N

+,

M > max{N1, logξ
β

αη∗ − 1}}. Then we have for k ≥ N2

E{ΔV (X (k), k)} ≤ −β∗||X (k)||2 (6.24)

where β∗ = β − αη∗ξ N2+1 > 0. Summing from N2 to N > N2 we obtain

E{
N∑

k=N2

||X (k)||2} ≤ 1

β∗ (E{V (X (N2), N2)} − E{V (X (N + 1), N + 1)})

≤ 1

β∗ E{V (X (N2), N2)},

which implies that

E{
∞∑
k=0

||X (k)||2} ≤ 1

β∗ E{V (X (N2), N2)} + E{
N2−1∑
k=0

||X (k)||2}. (6.25)

This proves the stochastic stability of the closed-loop system in (6.13) by
Definition 6.1.
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Necessity. Suppose the closed-loop system in (6.13) is stochastically stable, that is,

E{
∞∑
k=0

||X (k)||2|X0, τ
∗
0 } < XT

0 WX0. (6.26)

Define

XT (n)P̄(N − n, τ ∗
n )X (n) = E{

N∑
k=n

XT (k)Q(τ ∗
k )X (k)|Xn, τ

∗
n } (6.27)

with Q(τ ∗
k ) > 0. It is noticed that XT (n)P̄(N − n, τ ∗

n )X (n) is upper bounded from
(6.26) andmonotonically non-decreasing as N increases since Q(τ ∗

k ) > 0. Therefore
its limit exists which is denoted by

XT (n)P(i)X (n) = lim
N→∞ XT (n)P̄(N − n, τ ∗

n = i)X (n). (6.28)

Since (6.28) is valid for any X (n), we obtain

P(i) = lim
N→∞ P̄(N − n, τ ∗

n = i) > 0. (6.29)

Now consider

E{XT (n)P̄(N − n, τ ∗
n )X (n) − XT (n + 1)P̄(N − n − 1, τ ∗

n+1)X (n + 1)|Xn, τ
∗
n = i}

=XT (n)[P̄(N − n, i) −
∑
j∈M∗

λ∗
i j (n + 1)�T ( j)P̄(N − n − 1, j)�( j)]X (n)

=XT (n)Q(i)X (n). (6.30)

Since (6.30) is valid for any X (n), we obtain

P̄(N − n, i) −
∑
j∈M ∗

λ∗
i j (n + 1)�T ( j)P̄(N − n − 1, j)�( j) = Q(i) > 0. (6.31)

Let N → ∞,

P(i) −
∑
j∈M ∗

λ∗
i j (n + 1)�T ( j)P( j)�( j) > 0,∀n

Let n → ∞,
P(i) −

∑
j∈M ∗

λ∗
i j�

T ( j)P(i)�( j) > 0,

which completes the proof.
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The result below readily follows using the Schur complement.

Corollary 6.1 System (6.1) is stochastically stabilizable using the packet-based con-
trol approach with the control law in (6.4) if and only if there exist P(i) > 0, Z(i) >

0, K (i), i ∈ M ∗ such that the following (τ̄ + 1) LMIs hold

(
P(i) R(i)
RT (i) Q

)
> 0, i ∈ M ∗ (6.32)

with the equation constraints

P(i)Z(i) = I,∀i ∈ M ∗, (6.33)

where R(i) = [(λ∗
i0)

1
2 �T (0) . . . (λ∗

i τ̄ )
1
2 �T (τ̄ )], Q = diag{Z(0) . . . Z(τ̄ )} and �(i)

(consequently K (i)) is defined in (6.13).

The LMIs in Corollary 6.1 with the matrix inverse constraints in (6.33) can be
solved using the Cone Complementarity Linearization (CCL) algorithm [5].

6.5 Numerical Simulation

A numerical example is considered in this section to illustrate the effectiveness of the
propose approach. Consider the system in (6.1) with the following system matrices
borrowed from [23],

A =

⎛
⎜⎜⎝
1.0000 0.1000 −0.0166 −0.0005

0 1.0000 −0.3374 −0.0166
0 0 1.0996 0.1033
0 0 2.0247 1.0996

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0.0045
0.0896

−0.0068
−0.1377

⎞
⎟⎟⎠ .

This system is open-loop unstable with the eigenvalues at 1, 1, 1.5569 and 0.6423,
respectively. In the simulation, the random round trip delay is upper bounded by 4,
i.e., τk ∈ M = {0, 1, 2, 3, 4,∞}, with the following transition probability matrix,

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.1 0.2 0.2 0.3 0.2 0
0.2 0.2 0.2 0.2 0.1 0.1
0.24 0.06 0.48 0.12 0.1 0
0.15 0.25 0.3 0.15 0.1 0.05
0.3 0.3 0.2 0.1 0.1 0
0.3 0.3 0.15 0.15 0.1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

ybzhao@zjut.edu.cn



144 6 Networked Control System: A Markovian Jump System Approach

τ
τ

τ

0 10 20 30 40 50 60

k

0 10 20 30 40 50 60

k

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

k k

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

τ

Fig. 6.3 Comparison of the practical delays τk and those after the comparison process τ ∗
k where 5

on the vertical axis represents a data packet dropout

The limit distribution of the above ergodic Markov chain can be simply obtained
by Lemma 6.2,

π = (
0.1982 0.1814 0.3000 0.1738 0.1198 0.0268

)
.

�∗ in Proposition 6.1 can then be calculated by (6.19) as

�∗ =

⎛
⎜⎜⎜⎜⎝
0.1982 0.8018 0 0 0
0.2224 0.1767 0.6008 0 0
0.2290 0.1699 0.3612 0.2398 0
0.2186 0.2729 0.2501 0.1313 0.1271
0.3000 0.3000 0.1909 0.1091 0.1000

⎞
⎟⎟⎟⎟⎠ .

The comparison between the practical delays τk and those after the comparison
process using the packet-based control approach τ ∗

k is illustrated in Fig. 6.3 where
5 on the vertical axis represents a data packet dropout. From Fig. 6.3 it is seen that
data packet dropout has been effectively dealt with using the packet-based control
approach, by noticing that τ ∗

k ∈ M ∗ = {0, 1, 2, 3, 4}.
From Corollary 6.1, the packet-based controller is obtained as follows, where it

is seen that for different network conditions, different feedback gains are designed,

K (0) = (
0.5292 0.6489 22.4115 2.8205

)
,

K (1) = (
0.3792 0.8912 20.2425 5.3681

)
,

K (2) = (
0.0499 0.4266 15.6574 5.7322

)
,

K (3) = (−0.4400 −0.3003 9.2976 5.0540
)
,

K (4) = (−0.8400 −1.3422 2.7723 2.9173
)
.
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Using the packet-based control approach with the above packet-based controller,
the state trajectories of the closed-loop system is illustrated in Fig. 6.4 with the initial
states x(−3) = x(−2) = x(−1) = x(0) = [0 0.1 0 − 0.1]T , which demonstrates
the stochastic stability of the closed-loop system.

On the contrary, without the packet-based control strategy, even using the same
controller design method (that is, using K (i) ≡ K (0), i ∈ M , i.e., K (0) fixed for all
network conditions), the system is shown to be unstable under the same simulation
conditions, see Fig. 6.5. Furthermore, consider the conventional control approach
proposed in [22] where no packet-based control structure was considered and the
feedback gain was designed as K = [0.9844 1.6630 25.9053 6.1679] fixed for all
network conditions, the system is also shown to be unstable under the same simulation

Fig. 6.4 The system is
stable using the packet-based
control approach
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Fig. 6.5 The system is
unstable without the
packet-based control
strategy, using K (0) fixed for
all network conditions

0 50 100 150 200
−12

−10

−8

−6

−4

−2

0

2

4

6

8
x 108

x(
k)

k

x
1
(k)

x
2
(k)

x
3
(k)

x
4
(k)

ybzhao@zjut.edu.cn



146 6 Networked Control System: A Markovian Jump System Approach

Fig. 6.6 The system is
unstable using conventional
control approach with a fixed
feedback gain
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conditions, see Fig. 6.6. These comparisons proves the effectiveness of the proposed
packet-based control approach and the stabilized controller design method.

6.6 Summary

By taking advantage of the packet-based data transmission in NCSs, a packet-based
control approach is proposed for NCSs, which can be used to actively compensate
for the communication constraints in NCSs including network-induced delay, data
packet dropout and data packet disorder simultaneously. The novel model obtained
based on this approach offers the designers the freedom of designing different con-
trollers for different network conditions. The stochastic stabilization result is then
obtained by modeling the communication constraints as a homogeneous ergodic
Markov chain and then the closed-loop system as a Markovian jump system. This
result is based on a better understanding of the packet-based data transmission in
the stochastic fashion and enabled the proposed packet-based control approach to be
applied in practice.
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Chapter 7
Applications Based on the Markov Jump
Theory

This chapter consists of two applications of Markovian jump systems. Section7.2
considers the fault-tolerant control for wheeled mobile manipulators. We are con-
cerned with the output feedback H∞ control based on a high-gain observer for
wheeled mobile manipulators, since the velocity signals are generally not available
and indirectly obtained from the measured positions. We are to design a mode-
dependent dynamic output feedback controller for wheeled mobile manipulators
which guarantees not only the robust stochastic stability but also a prescribed dis-
turbance attenuation level for the resulting closed-loop system, irrespective of the
transition rate uncertainties. Section7.3 considers the jump linear quadratic regula-
tor problem of MJLS. A two-level regulating approach is employed to design the
control law and the transition rate control policy. The problem of tuning the existing
policy with respect to a prescribed quadratic performance criterion is formulated as a
gradient projection based iterative optimization. Based on this method, a new policy
is obtained with better performance than that of the initial policy.

7.1 Introduction

Wheeledmobilemanipulators have attracted a lot of attention recently [30, 33]. How-
ever, besides exogenous disturbances which may increase the difficulty of reference
tracking control for mobile manipulators, actuator failures (either in wheels or joints)
might suddenly occur during themotion ofmobilemanipulators. The failed actuators,
where the torque supplied to the motors of one or more joints vanishes suddenly, can
destabilize the system with the possibility of damaging the robot components. When
a free torque fault occurs, the fully actuated manipulator would become an under-
actuated one, to avoid the necessity of stopping the robot when a fault occurs, the
Markovian jump linear system (MJLS) theory was developed to design a procedure
to incorporate abrupt changes in the manipulator configuration.
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Continuous-time MJLS [6, 33] is a hybrid system, which consists of a finite
number of subsystems and a jumping law governing the switching among them. The
jumping law, usually denote by r(t), is a continuous-timeMarkov chain representing
the activated subsystem at time t , i.e. the mode of the hybrid system. The subsystem
can often be represented by differential equations which determine the evolution of
the physical states, usually denote by x(t), when the system mode is given. That is
the evolution of the system states depends not only on each subsystem but also the
jumping law.MJLS is widely used tomodel and analyze the practical systems subject
to abrupt changes, such as component failures, sudden environmental disturbances
and the abrupt variation of the operation point and the like.

MJLS method used to model and analyze fault occurrence for robotic systems
is an effective but challenging work. In [37, 38], the proposed control based on
state-feedback Markovian H∞ control was proposed for fault-tolerant of three-link
robotic manipulator. However, the wheeled mobile manipulators are obviously dif-
ferent from robotic manipulators due to nonholonomic constraints. Apparently, the
existing control method [37, 38] for robotic manipulators is not suitable for the
robots with velocities constraints. In this Chapter, we develop the methodology via
Markovian control theory to evaluate fault tolerant mobile manipulators. First, the
controller designed in this Chapter is H∞ state-feedback, which requires that all the
variables could be directly measured. However, it’s generally not available for the
mobile manipulators. To overcome this practical difficulty, we are concerned with
the output feedback H∞ control based on a high-gain observer. Second, for the rea-
son that only the estimated values of the mode transition rates are available, and
the estimation errors, referred to as switching probability uncertainties, may lead to
instability or at least degraded performance of a system as the uncertainties in sys-
tem matrices do [44]. In this part, two different types of descriptions about uncertain
switching probabilities have been considered. The first one is the polygon description
where the mode transition rate matrix is assumed to be in a convex hull with known
vertices [13]. The other type is described in an element-wise way. In this case, the
elements of the mode transition rate matrix are measured in practice while the error
bounds are given [10]. In many situations, the element-wise uncertainty description
can be more convenient as well as natural. In this Chapter, we consider the element-
wise uncertainties in the mode transition rate matrix and based on this we give a
more realistic Markovian model for the mobile manipulator system. The uncertain-
ties are allowed within an uncertainty domain. Third, due to the measurement error
and the modeling imprecision, the parametric uncertainties should be considered. In
the chapter, we consider the system parametric uncertainties and the external dis-
turbances, respectively and independently. A robust output feedback controller is
designed to deal with the system matrix uncertain part, while a H∞ controller is then
presented to realize disturbance attenuation.

Another important part of this chapter is the optimal control problem of MJLS,
which has attracted many researchers [14, 25, 33]. The majority of the studies focus
on the feedback optimal regulator of jump linear system (JLS) under the assumption
that the transition rate of the continuous-time Markov chain are given a prior. This
assumption means that the transition among different regimes is natural or is affected
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by the inherent characteristic of the system itself. However, it is not the case in prac-
tice. Although the switching between different regime is random, the transition rate
or probability is always affected by some external factors. For example, in a failure
prone manufacturing system, an important features is that the failure rate and the
frequency of preventive maintenance of the machine are relevant. In the operational
regime, when the production rate is guaranteed, we can reduce the machine failure
rate and improve the productivity by some maintenance policies including cleaning,
lubrication, adjustment, etc. In the failure regime, some repair policy can be applied
to reduce the dwell time in the failure regime. The wireless networked control system
is another example. The stochastic packet loss is unavoidable in an unreliable wire-
less channel and the package loss rate is affected by the intensity of communication
signal [22].

The relevant studies on such kind of systems are rare. Early study can be traced
back to [40], where the u-dependent transition rates are considered to describe the
system with switches being dependent on the value of inputs or loads. A nonlinear
partial differential equation related to the optimal solution of the x- and u-dependent
problem, was adopted to represent this kind of system. However, the exact solution of
the nonlinear partial differential equation was not fully investigated in that work. In
[24], the discrete-time jump linear quadratic (JLQ) problem was considered for JLS,
where the transition probability is controlled by the choice of a finite-valued input.
The optimal solution for finite and infinite time horizon were both developed. For
manufacturing systems, some models were proposed in [7, 9], where the transition
rate between the operational regime and the failure regime depends not only on
the age of the machine, but also the frequency of maintenance. In [45], under the
situation that the jumping rates are controlled, the JLQ regulator for such JLS is
studied. Recently, based on the long-run average performance criterion, a gradient
potential method was applied to analyze Jump Linear Quadratic Gaussian (JLQG)
model in [45].

In this chapter, we still consider the JLQ problem for the continuous-time time-
invariant MJLS. Differently, the switching between regimes is characterized by
Markov decision processes (MDPs), i.e. the transition rate is determined by the
corresponding actions and this relationship is described by the regime-dependent
policy. Under the assumption that the initial policy is available, our objective is to
improve the quadratic performance index given a prior, by tuning the initial policy.
To this end, we employ a two-level regulating method and prove that the closed-loop
Lyapunov matrix is twice differentiable with respect to the policy variable. Based
on this result, we develop an algorithm to seek for a near-optimal policy by the gra-
dient projection method, and prove the convergence of the algorithm. Furthermore,
we study the near-optimal policy in special cases, and obtain some more practical
results.

The Chapter is organized as follows. The system modeling of Wheeled Mobile
Manipulators are given in Sect. 7.2. The output feedback controller is showed in
Sect. 7.2.2.Markovianmodel and some definition and lemma are given in Sect. 7.2.3.
Stability analysis are given in Sect. 7.2.4. The simulation studies are showed in
Sect. 7.2.5. The problem of the second part of this chapter is formulated in Sect. 7.3,

ybzhao@zjut.edu.cn



152 7 Applications Based on the Markov Jump Theory

where some definitions and assumptions are also introduced. The main results are
provided in Sect. 7.3.2, followed by two illustrative examples in Sect. 7.3.4. Finally,
concluding remarks are drawn in Sect. 7.4.

7.2 Robotic Manipulator System

7.2.1 Introduction to the System

Consider a robotic manipulator with na degrees of freedom mounted on a two-
wheeled driven mobile platform. The dynamics can be described as [29]:

M(q)q̈ + C(q, q̇)q̇ + G(q) + d(t) = B(q)τ + f, (7.1)

where q = [qT
v , qT

a ]T ∈ Rn with qv = [x, y, ϑ]T ∈ Rnv denoting the generalized
coordinates for the mobile platform and qa ∈ Rna denoting the coordinates of the
roboticmanipulator joints. Specifically, in this example, n = nv + na . The symmetric
positive definite inertia matrixM(q) ∈ Rn×n = [Mv, Mva; Mav, Ma], the Centripetal
and Coriolis torques C(q̇, q) ∈ Rn×n = [Cv,Cva;Cav,Ca], the gravitational torque
vector G(q) ∈ Rn = [GT

v ,GT
a ]T , the external disturbance d(t) ∈ Rn = [dT

v ; dT
a ]T ,

the known input transformation matrix B(q) ∈ Rn×m , the control inputs τ ∈ Rm ,
B(q)τ = [τ T

v , τ T
a ]T , and the generalized constraint forces f ∈ Rn = [J T

v λn, 0]T ,
and Mv, Ma describe the inertia matrices for the mobile platform, the links respec-
tively,Mva andMav are the coupling inertiamatrices of themobile platform, the links;
Cv,Ca denote the Centripetal and Coriolis torques for the mobile platform, the links,
respectively;Cva ,Cav are the coupling Centripetal and Coriolis torques of the mobile
platform, the links. Gv and Ga are the gravitational torque vectors for the mobile
platform, the links, respectively; τv is the input vector associated with the left driven
wheel and the right driven wheel, respectively; and τa is the control input vectors for
the joints of the manipulator; dv, da denote the external disturbances on the mobile
platform, the links, respectively, such as a vibration tend to affect the positioning
accuracy of the manipulator; Jv ∈ Rl×nv is the kinematic constraint matrix related
to nonholonomic constraints; λn ∈ Rl is the associated Lagrangian multipliers with
the generalized nonholonomic constraints. We assume that the mobile manipulator
is subject to known nonholonomic constraints.

The vehicle subject to nonholonomic constraints can be expressed as Jvq̇v = 0.
Assume that the annihilator of the co-distribution spanned by the covector fields
J T
v1 (qv), . . . , J T

vl (qv) is an (nv − l)-dimensional smooth nonsingular distribution Δ

on Rnv . This distribution Δ is spanned by a set of (nv − l) smooth and linearly
independent vector fields H1(qv), . . . , Hnv−l(qv), i.e. Δ = span{H1(qv), . . . ,

Hnv−l(qv)}, which satisfy, in local coordinates, the following relation HT (qv)
J T
v (qv) = 0 [29], where H(qv) = [H1(qv), . . . , Hnv−l(qv)] ∈ Rnv×(nv−l). Note that
HT H is of full rank. The nonholonomic constraintimplies the existence of vector

ybzhao@zjut.edu.cn



7.2 Robotic Manipulator System 153

Table 7.1 The modes of operation

Mode Torques

τθr τθl τθ1 τθ2 · · · τθna

1 Normal Normal Normal Normal · · · Normal

2 Normal 0 Normal Normal · · · Normal

3 Normal 0 0 Normal · · · Normal

4 Normal 0 Normal 0 · · · Normal
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2na+1 Normal 0 0 0 · · · 0

η̇ ∈ Rnv−l , such that q̇v = H(qv)η̇. Considering the above equation and its derivative,
the dynamics of mobile manipulator can be expressed as

M (ζ )ζ̈ + C (ζ, ζ̇ )ζ̇ + G (ζ ) + D(t) = U , (7.2)

where M (ζ ) =
[
HT MvH HT Mva

MavH Ma

]
, ζ =

[
η

qa

]
,G (ζ ) =

[
HTG

v
Ga

]
,C (ζ, ζ̇ ) =[

HTM
v Ḣ + HTC

vH HTC
va

Mav Ḣ + CavH Ca

]
,U = [

τ T H
v τ T

a

]T
,D(t) = [

dT H
v dT

a

]T
.

Remark 7.1 In this example, we choose ζ = [θr , θl , θ1, θ2, · · · , θna ]T , η = [θr , θl ]T ,
and U = [τr , τl , τ1, · · · , τna ]T .
Remark 7.2 The total degree of freedom for the reduced model of the two-wheeled
driven mobile manipulator with two wheels and na joints is nq = na + 2.

Now we suppose failures may appear in left wheel and each joint independently.
Then 2na+1 modes of operation, can be associated to Table7.1 depending on which
torque has failed. We partition the dynamics (7.2) into two parts, the operational part
and the failed part, represented by “o” and “f”, respectively. Then we can rewrite the
dynamics (7.2) as

[
Moo(ζ ) Mof (ζ )

M f o(ζ )M f f (ζ )

] [
ζ̈o
ζ̈ f

]
+

[
Coo(ζ, ζ̇ )Cof (ζ, ζ̇ )

C f o(ζ, ζ̇ )C f f (ζ, ζ̇ )

] [
ζ̇o
ζ̇ f

]

+
[
Go

G f

]
+

[
do(t)
d f (t)

]
=

[
Boo Bof

B f o B f f

] [
τo
0

]
,

where Moo,Mof ,M f o, M f f : the coupling inertia matrices of the operational parts and
the failed parts;Coo,Cof ,C f o,C f f : the Centripetal and Coriolis torque matrices of the
operational parts and the failed parts; Go,G f : the gravitational torque vector for the
operational parts and the failed parts respectively; do(t),d f (t): the external distur-
bance on the operational parts and the failed parts respectively; Boo,Bof ,B f o,B f f : the

ybzhao@zjut.edu.cn



154 7 Applications Based on the Markov Jump Theory

known full rank input transformation matrix of the operational parts and the failed
parts; τo: the control input torque vector for the operational parts of the manipulator;
τ f : the control input torque vector for the failed parts of the manipulator satisfying
τ f = 0. After some simple manipulations, we obtain

B̄τo = M̄(ζ )ζ̈o + H̄(ζ, ζ̇ ) + d̄(ζ, t), (7.3)

where

B̄ = Boo − Mof M
−1
f f B f o,

M̄ = Moo − Mof M
−1
f f M f o,

H̄(ζ, ζ̇ ) = C̄1(ζ, ζ̇ )ζ̇o + C̄2(ζ, ζ̇ )ζ̇ f + Go − Mof (ζ )M−1
f f (ζ )G f (ζ ),

d̄(ζ, t) = do(t) − Mof (ζ )M−1
f f (ζ )d f (t).

with C̄1(ζ, ζ̇ ) = Coo(ζ, ζ̇ ) − Mof M
−1
f f (ζ )C f o(ζ, ζ̇ ) and C̄2(ζ, ζ̇ ) = Cof (ζ, ζ̇ ) − Mof

×M−1
f f (ζ )C f f (ζ, ζ̇ ).

The fully operationalmobilemanipulator can be represented by (7.3) with B̄ = B,
M̄(ζ ) = M(ζ ), H̄(ζ, ζ̇ ) = C(ζ, ζ̇ )ζ̇ + G, d̄(ζ, t) = d(t). Then, by linearizing the
dynamics (7.3) around an operation point with position q0 and velocity q̇0, we have
the following linear system

{
ẋ = Ā(ζ0, ζ̇0)x + B̄(ζ0)u + W̄ (ζ0)w
z = C̄x + D̄u

(7.4)

where

Ā(ζ0, ζ̇0)=
[

0 I
− ∂

∂ζ T (M̄−1(ζ )H̄(ζ, ζ̇ ))−M̄−1(ζ ) ∂

∂ζ̇ T (H̄(ζ, ζ̇ ))

] ∣∣∣∣
ζ0,ζ̇0

,

B̄(ζ0) =
[

0
M̄−1(ζ )B̄

] ∣∣∣∣
ζ0

W̄ (ζ0) =
[

0
M̄−1(ζ )

] ∣∣∣∣
ζ0

.

s

and x = [ζ d − ζ, ζ̇ d − ζ̇ ]T represents the state tracking error, z, u = τo, w = d(t)
represent the controlled output, the control input and exogenous disturbance, respec-
tively, and C̄ and D̄ are constant matrices defined by the designer and are used to
adjust the Markovian controllers.
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7.2.2 Output Feedback Controller Based on High-Gain
Observer

Since it may be difficult to measure the velocity signal, only the position signal
ζ d − ζ is measurable, we need to estimate x to implement the feedback control.
Therefore, a high-gain observer is employed to estimate the states of the system.

Lemma 7.1 Suppose the function y(t) and its first n derivatives are bounded. Con-
sider the following linear system

εξ̇1 = ξ2, εξ̇2 = ξ3, . . . , εξ̇n−1 = ξn,

εξ̇n = −b1ξn − b2ξn−1 − · · · − bn−1ξ2 − ξ1 + y(t),
(7.5)

where the parameters b1 to bn−1 are chosen so that the polynomial sn + b1sn−1 +
· · · + bn−1s + 1 is Hurwitz. Then, there exist positive constants hk, k = 2, 3, . . . , n
and t∗ such that for all t > t∗ we have

ξk+1

εk
− y(k) = −εψ(k+1), k = 1, . . . , n − 1 (7.6)

|ξk+1

εk
− y(k)| ≤ εhk+1, k = 1, . . . , n − 1 (7.7)

where ε is any small positive constant,ψ = ξn + b1ξn−1 + . . . + bn−1ξ1 and |ψ(k)| ≤
hk. ψ(k) denotes the kth derivative of ψ .

Proof The proof can be found in [1].

Let the measured output y(t) = [yT1 (t), yT2 (t), . . . , yTnq (t)]T ∈ R
nq be the posi-

tion tracking error signal ζ d − ζ measured in the nq -link manipulator system (7.4).
Applying observer (7.5), we define the following variables ( j = 1, 2, . . . , nq ):

εξ̇ j1 = ξ j2, εξ̇ j2 = −b jξ j2 − ξ j1 + y j (t),

ξ j (t) = [ξ T
j1(t), ξ

T
j2(t)]T , x̂ j (t) = [yTj (t),

ξ T
j2(t)

ε
]T .

Transform the above equations into matrix form, we get

{
ξ̇ (t) = Mξ(t) + Ny(t)
x̂(t) = Mpξ(t) + Npy(t)

(7.8)
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where

ξ(t)=[ξ T
1 (t), ξ T

2 (t), . . . , ξ T
nq (t)]T, x̂(t)=[x̂ T1 (t), x̂ T2 (t), . . . , x̂ Tnq (t)]T ,

M = diag{M1, . . . ,Mnq }, M j = [0, 1
ε
;−1/ε,−b j

ε
];

N = diag{N1, . . . ,Nnq }, N j = [0, 1/ε]T ;
Mp = diag{Mp1, . . . ,Mpnq }, Mpj = [0, 0; 0, 1/ε];
Np = diag{Np1, . . . ,Npnq }, Npj = [1, 0]T ,

with the chosen parameters b j so that the polynomial s2 + b j s + 1 is Hurwitz, for
j = 1, 2, . . . , nq .

The output feedback controller on observer (7.8) is given by

u(t) = K x̂(t), (7.9)

where K is the controller gain to be designed.

Remark 7.3 The output feedback controller proposed here is easy to implement
because it is simply a state feedback designwith a linear high-gain observer without a
priori knowledge of the nonlinear systems. Unlike other exact linearization approach,
it is not necessary to search for a nonlinear transformation and an explicit control
function. Moreover, the high-gain observer has certain disturbance rejection and
linearization properties.

7.2.3 Markovian Model and Problem Statement

The Markovian model developed in this section not only contains the transition
among the operation points in system (7.4), but also describes the probability of a
fault occurrence. For a mobile manipulator with 2 wheels and na joints, we have
totally 2na+1 possible configurations as discussed in Sect. 7.2.1. Now we proceed to
consider the linearization configurations.

Note that although the transitions among the plant linearization points are not
a genuine stochastic event in contrast with the moment of a fault occurrence, the
Markovian techniques can be applied in this case since the Markovian transition
rate is related with the expected mean time the system is supposed to lie in each
state of the Markovian chain. We may consider the workspace of each joint with
a positioning domain which range from ζp1 to ζp2 , with the velocities set to zero,
and divide the workspace into np sectors. For each range of (ζp2 − ζp1)/np of each
joint, it is defined as a linearization point for the manipulator. For each linearization
point, there exist 2 sets of matrices Ā(ζ0, ζ̇0), B̄(ζ0), W̄ (ζ0), C̄, D̄ corresponding
to all the 2na+1 configurations. Hence, the Markovian modes are the manipulator
dynamic model linearized properly according to (7.4) in these linearization points
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for all configurations. The choice of these sectors and the number of the sectors np

need to be firstly decided in order to guarantee the effectiveness of the Markovian
jump model.

Then, the number of all the possible combinations of positioning of the 2 wheels
and na joints θ1, θ2, . . . , θna may be computed as 2na+1nna+2

p , i.e. n + 2 linearization
points with 2na+1nna+2

p modes are found, which means a 2na+1nna+2
p × 2na+1nna+2

p
transition rate matrix Π is needed. To distinguish the operation point level and
the fault occurrence level more clearly, we may partition Π into 2na+1 blocks with
each block be an nna+2

p × nna+2
p matrix. An illustrative example will be shown in

Sect. 7.2.5.

Remark 7.4 Thedimensions of thematrix sets { Ā(ζ0, ζ̇0), B̄(ζ0), W̄ (ζ0), C̄, D̄}may
be different among all the configurations. While applying Markovian method, lines
and columns of zeros may be introduced to make sure that the system matrix sets of
all modes have the same dimension.

Remark 7.5 Note that all the elements of Π are selected empirically, which means
they cannot be precisely known as a priori. In order to tackle the estimation error,
we consider a more realistic way where the nominal estimated value of the transition
rate matrix is measured in practice and error bounds are given. This problem will be
described in detail in Sect. 7.2.4.

Let (Ω,F , {Ft }t≥0, P) be a complete probability space with a filtration {Ft }t≥0

satisfying the usual conditions (increasing and right continuous and F0 contains
all P-null sets). We denote by L2[0,∞) the Hilbert space formed by the stochastic
process z = {z(t); t ≥ 0} such that, for each t ≥ 0, z(t) is a second order real valued
random vector, Ft -measurable and ||z||22 �

∫ ∞
0 E{||z(t)||2}dt < ∞. Consider the

following hybrid system:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = A(r(t))x(t) + B(r(t))u(t) + W (r(t))w(t)
z(t) = C(r(t))x(t) + D(r(t))u(t)
y(t) = E(r(t))x(t)
x(0) = x0, r(0) = r0

(7.10)

where x(·) ∈ R
nq , u(·) ∈ R

nu , z(·) ∈ R
nz , y(·) ∈ R

ny are, respectively, the state tra-
jectory, the input, the controlled output, and the measured output for the system
(7.10). w(·) ∈ R

nw is the exogenous disturbance signal that belongs to L2[0,∞).
A(·), B(·),W (·),C(·), D(·), E(·) are real constant matrices with appropriate dimen-
sions. These matrices are given by the system (7.4). r(·) is a homogeneous Markov
process taking value in a finite state space S = {1, 2, . . . , N } with generator Π

showed in (1.3). The probability initial distribution of the Markov process is given
by μ = (μ1, μ2, . . . , μN ) in such a way that P(r0 = i) = μi . As mentioned in
Sect. 7.2.1, both systemmatrices A(r(t)), B(r(t)) and themode transition ratematrix
Π are not precisely known as a priori. The following Assumptions are in order.
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Assumption 7.1 Divide the parameter matrices A(r(t)), B(r(t)) into a nominal part
and a perturbed part

A(r(t)) = Ā(r(t)) + ΔA(r(t), t), B(r(t)) = B̄(r(t)) + ΔB(r(t), t), (7.11)

where the uncertain parameters are assumed to be in following forms:

ΔA(r(t), t) = Ha(r(t)F(r(t), t)L(r(t)),

ΔB(r(t), t) = Hb(r(t)F(r(t), t)L(r(t)),
(7.12)

where Ha(r(t)), Hb(r(t)), L(r(t)) are known constant real matrices of appropriate
dimensions, while F(r(t), t) denotes the uncertainties in the system matrices satis-
fying FT (r(t), t)F(r(t), t) ≤ I,∀r(t) ∈ S .

Assumption 7.2 The mode transition rate matrix belongs to the following admissi-
ble uncertainty domain:

Dπ � {Π̄ + ΔΠ : |Δπi j | ≤ εi j , εi j ≥ 0,∀i, j ∈ S , j �= i}, (7.13)

where Π̄ � (π̄i j ) is a known constant transition rate matrix, while ΔΠ � (Δπi j )

denotes the uncertainty. For all i, j ∈ S , j �= i , π̄i j (≥ 0) denotes the estimated value
of πi j , and the error between them is referred as to Δπi j which can take any value in
[−εi j , εi j ]; For all i, j ∈ S , π̄i i = −∑

j∈S , j �=i π̄i j and Δπi i = −∑
j∈S , j �=i Δπi j .

Remark 7.6 The estimation error bound εi j could be determined empirically from
an admissible portion of the nominal value πi j which is the estimated value of the
mode transition rate after lots of statistics in practice, for example, 10% of πi j .

A dynamic output feedback controller based on the high-gain observer is adopted
to solve the problem of fault-tolerant manipulator control described in Sect. 7.2.1.
According to (7.8) and (7.9), the linear mode-dependent output control law is
given by: {

ξ̇ (t) = Mξ(t) + Ny(t)
u(t) = K (r(t))Mpξ(t) + K (r(t))Npy(t)

(7.14)

It is possible to incorporate both systems (7.10) and (7.14), into a closed-loop system,
with the augmented state variable ζ̄ (t) = [xT (t), ξ T (t)]T ∈ R

2n for any t ≥ 0. The
state and output equations for this 2n-dimensional system may be written as:

{
ζ̇ (t) = Aa(r(t))ζ̄ (t) + Wa(r(t))w(t)
z(t) = Ca(r(t))ζ̄ (t)

(7.15)
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where

Aa(r(t)) =
[

Aa11 B(r(t))K (r(t))Mp

NE(r(t)) M

]
,

Aa11 = A(r(t)) + B(r(t))K (r(t))NpE(r(t)),

Ca(r(t)) =
[
C(r(t)) + D(r(t))K (r(t))NpE(r(t))

D(r(t))K (r(t))Mp

]T

,

Wa(r(t)) =
[
W (r(t))

0

]
.

For simplicity, in the sequel, let Mi denote the corresponding matrix, M(r(t)), for
each i ∈ S . Theweak infinitesimal generator, actingon functionalV : C(Rn × S ×
R+) → R, is defined by LV (x(t), i, t) = lim

Δ→0+
1
Δ

× {E[V (x(t + Δ), r(t + Δ), t +
Δ)|x(t), r(t) = i] − V (x(t), i, t)}. For further references on the associated operator
of the hybrid system (7.10), we suggest the reader to see related work in [27, 41].

Definition 7.1 [18] The system (7.10) withw ≡ 0 is said to be stochastic stable (SS)
if

∫ +∞
0 E{||x(t; x0, r0)||2}dt < +∞, for any finite initial condition x0 ∈ R

n and any
initial distribution for r0 ∈ S .

Lemma 7.2 [43] Given matrices Q = QT , H, E and R = RT > 0 of appropriate
dimensions, Q + HFE + ET FT HT < 0, for all F satisfying FT F ≤ R, if and only
if there exists some real number λ ∈ R

+ such that Q + λHHT + λ−1ET RE < 0.

Lemma 7.3 [34] Given matrices D, F and H of appropriate dimensions with F
satisfying FT F ≤ I . Then for any scalar ε > 0 and vectors x, y, 2xT DFHy ≤
1
ε
xT DDT x + εyT HT Hy.

7.2.4 Stability Analysis

7.2.4.1 Robust Stochastic Stability

Firstly, we consider the robust stochastic stability for the system (7.10) with uncer-
tainty domain (7.11) when w ≡ 0.

Theorem 7.1 The Markovian jump system (7.10) (w(t) ≡ 0) with uncertainty
domain (7.11) and dynamic output feedback control law (7.14) is robustly sto-
chastic stable if, for any i, j ∈ S , i �= j , there exist positive-definite matrices
Xi ,Yi ∈ R

n×n, Ki ∈ R
nu×n and positive real numbers λi j such that the LMIs (7.16)

holds
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11i Φ12i Ψ1i 0 Γ1i Γ2i Γ3i Γ4i Γ5i

∗ Φ22i 0 Ψ2i 0 MT
p K

T
i MT

p K
T
i L

T
i 0 0

∗ ∗ −�i 0 0 0 0 0 0
∗ ∗ ∗ −�i 0 0 0 0 0
∗ ∗ ∗ ∗ −εi I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (7.16)

where Φ11i = ĀT
i Xi + Xi Āi + ∑

j∈S
π̄i j X j + ∑

j∈S , j �=i
λi j

4 ε2i j In + εi LT
i Li , Φ12i =

ET
i N

T Yi , Γ1i = Xi Hai , Γ2i = ET
i N

T
p K

T
i , Γ3i = ET

i N
T
p K

T
i L

T
i , Γ4i = Xi B̄i , Γ5i =

Xi Hbi , Φ22i = MTYi + Yi M + ∑
j∈S

π̄i j Y j + ∑
j∈S , j �=i

λi j

4 ε2i j In, Ψ1i = [Xi − X1,

Xi − X2, . . . , Xi − Xi−1, Xi − Xi+1, . . . , Xi − XN ],Ψ2i = [Yi − Y1,Yi − Y2, . . . ,
Yi − Yi−1,Yi − Yi+1, . . . ,Yi − YN ], �i = diag{λi1 In, λi2 In, . . . , λi(i−1) In, λi(i+1)

In, . . . , λi N In}.
Proof We consider the equivalent closed-loop Markovian jump linear system (7.15)
without disturbance (i.e. w(t) ≡ 0). For each r(t) = i, i ∈ S , we define a positive-
definite matrix Pi ∈ R

2n×2n by Pi = diag[Xi ,Yi ]. Then we construct a stochastic
Lyapunov functional candidate asV (ζ̄ (t), i, t) = ζ̄ T (t)Pi ζ̄ (t)Applying theMarkov-
ian infinitesimal operator, we have

LV (ζ̄ (t), i, t) = ζ̄ T (t)(AT
ai Pi + Pi Aai +

∑
j∈S

πi j Pj )ζ̄ (t). (7.17)

With (7.11), (7.12) and (7.13), we have

LV (ζ̄ (t), i, t) = ζ̄ T (t)

(
Ωi +

[
LT
i F

T
i

0

] [
HT
ai Xi 0

] +
[
Xi Hai

0

] [
Fi Li 0

]

+
∑
j∈S

π̄i j Pj +
[
ET
i N

T
p K

T
i ET

i N
T
p K

T
i L

T
i

MT
p K

T
i MT

p K
T
i L

T
i

][
Inu 0
0 FT

i

][
B̄T
i Xi 0

HT
bi Xi 0

]

+
[
Xi B̄i Xi Hbi

0 0

][
Inu 0
0 Fi

][
Ki NpEi Ki Mp

Li Ki NpEi Li Ki Mp

]

+
∑

j∈S , j �=i

[1
2
Δπi j (Pj − Pi ) + 1

2
Δπi j (Pj − Pi )]

)
ζ̄ (t)

� ζ̄ T (t)Ξi ζ̄ (t), (7.18)

where Ωi =
[
ĀT
i Xi + Xi Āi ET

i N
T Yi

Yi N Ei MTYi + Yi M

]
.
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From Lemma 7.2, we know that Ξi < 0 if and only if there exist real numbers
ρi ∈ R

+ such that

Ωi +
[
LT
i F

T
i

0

] [
HT
ai Xi 0

] +
[
Xi Hai

0

] [
Fi Li 0

] +
∑
j∈S

π̄i j Pj

+ ρ−1
i

[
ET
i N

T
p K

T
i ET

i N
T
p K

T
i L

T
i

MT
p K

T
i MT

p K
T
i L

T
i

][
Ki NpEi Ki Mp

Li Ki NpEi Li Ki Mp

]

+ ρi

[
Xi B̄i Xi Hbi

0 0

] [
B̄T
i Xi 0

HT
bi Xi 0

]
+

∑
j∈S , j �=i

[1
2
Δπi j (Pj − Pi )

+ 1

2
Δπi j (Pj − Pi )] < 0

holds for each i ∈ S .
Now multiply the above equation by ρi on both sides and replace ρXi , ρYi with

Xi ,Yi . Then using Lemma 7.2 again, it is deduced that the above inequality holds if
and only if there exist real numbers εi , λi j ∈ R

+ such that

Ωi + εi

[
LT
i
0

] [
Li 0

] + ε−1
i

[
Xi Hai

0

] [
HT
ai Xi 0

] +
∑
j∈S

π̄i j Pj

+
[
ET
i N

T
p K

T
i ET

i N
T
p K

T
i L

T
i

MT
p K

T
i MT

p K
T
i L

T
i

][
Ki NpEi Ki Mp

Li Ki NpEi Li Ki Mp

]

+
[
Xi B̄i Xi Hbi

0 0

] [
B̄T
i Xi 0

HT
bi Xi 0

]
+

∑
j∈S , j �=i

[λi j

4
ε2i j I2n + 1

λi j
(Pj − Pi )

2] < 0

holds for each i, j ∈ S , which is equivalent to (7.16) in view of Schur complement
equivalence.

Hence, the LMIs (7.16) guarantee that Ξi < 0. Then we have LV (ζ̄ (t), i, t) =
ζ̄ T (t)Ξi ζ̄ (t) < 0. We choose α = max

i∈S
λmaxΞi . Obviously, α < 0.

It follows that

LV (ζ̄ (t), i, t) ≤ α||ζ̄ (t)||2 ≤ α||x(t)||2.

Using Dynkin Formula [12], we have

E{V (x(t), i, t)} − V (x0, r0, 0) ≤ αE{
∫ t

0
||x(s)||2ds},

which, together with E{V (x(t), i, t)} ≥ 0, implies

E{
∫ t

0
||x(s)||2ds} ≤ α−1{E{V (x(t), i, t)} − V (x0, r0, 0)

}
.
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Letting t → ∞ and noting that (−α)−1V (x0, r0, 0) < +∞, we know the system
(7.10) achieves robustly stochastic stable according to Definition 7.1. This completes
the proof.

7.2.4.2 Robust H∞ Disturbance Attenuation

Consider the H∞ performance function as

JT = E{
∫ T

0
[zT (t)z(t) − γ 2wT (t)w(t)]dt}, (7.19)

for T > 0. The following theorem gives the result.

Theorem 7.2 The Markovian jump system (7.10) with uncertainty domain (7.11)
and dynamic output feedback control law (7.14) is robustly stochastic stable with γ -
disturbance H∞ attenuation if, for any i, j ∈ S , i �= j , there exist positive-definite
matrices Xi ,Yi ∈ R

n×n, Ki ∈ R
nu×n and positive real numbers εi , λi j such that the

LMIs (7.20) holds

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11i Φ12i Ψ1i 0 Γ1i Γ2i Γ3i Γ4i

∗ Φ22i 0 Ψ2i 0 MT
p K

T
i MT

p K
T
i L

T
i 0

∗ ∗ −�i 0 0 0 0 0
∗ ∗ ∗ −�i 0 0 0 0
∗ ∗ ∗ ∗ −εi I 0 0 0
∗ ∗ ∗ ∗ ∗ −ρi I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ρi I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ρ−1

i I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Γ5i Γ6i Γ7i

0 MT
p K

T
i DT

i 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

−ρ−1
i I 0 0
∗ −I 0
∗ ∗ −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (7.20)
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for some given scalars ρi > 0, where

Φ11i= ĀT
i Xi+Xi Āi +

∑
j∈S

π̄i j X j+
∑

j∈S , j �=i

λi j

4
ε2i j In+εi L

T
i Li ,

Φ12i=ET
i N

T Yi , Φ22i=MTYi+Yi M+
∑
j∈S

π̄i j Y j+
∑

j∈S , j �=i

λi j

4
ε2i j In,

Γ1i=Xi Hai , Γ2i=ET
i N

T
p K

T
i , Γ3i=ET

i N
T
pK

T
i L

T
i , Γ4i= Xi B̄i ,

Γ5i = Xi Hbi , Γ6i = CT
i + ET

i N
T
p K

T
i DT

i , Γ7i = XiWi ,

Ψ1i = [Xi−X1,Xi−X2, . . . ,Xi−Xi−1,Xi−Xi+1,. . .,Xi−XN],
Ψ2i = [Yi −Y1,Yi −Y2, . . . ,Yi −Yi−1,Yi −Yi+1, . . . ,Yi −YN ],
�i = diag{λi1 In, λi2 In, . . . , λi(i−1) In, λi(i+1) In, . . . , λi N In}.

Proof Consider the equivalent closed-loop Markovian jump linear system (7.15), it
can be easy to obtain the condition (7.16) from (7.20). Hence, the closed-loop system
(7.15) is robustly stochastic stable. Similar as Theorem7.1, for each r(t) = i, i ∈ S ,
we define a positive-definite matrix Pi ∈ R

2n×2n by Pi = diag[Xi ,Yi ], and construct
a stochastic Lyapunov functional candidate as V (ζ̄ (t), i, t) = ζ̄ T (t)Pi ζ̄ (t). Applying
the Markovian infinitesimal operator, we have

LV (ζ̄ (t), i, t) = ηT (t)

[
Ξi PiWai

WT
ai Pi 0

]
η(t), (7.21)

where η(t) = [
ζ̄ T (t) wT (t)

]T
, Ξi is defined in (7.18).

Then by using Lemma 7.3, it follows that

Ξi ≤ Ωi +
[
LT
i F

T
i

0

] [
HT
ai
Xi 0

]
+

[
Xi Hai

0

] [
Fi Li 0

]

+ ρ−1
i

[
ET
i N

T
p K

T
i ET

i N
T
p K

T
i L

T
i

MT
p K

T
i MT

p K
T
i L

T
i

] [
Ki NpEi Ki Mp

Li Ki NpEi Li Ki Mp

]

+
∑

j∈S , j �=i

[1
2
Δπi j (Pj − Pi ) + 1

2
Δπi j (Pj − Pi )]

+ ρi

[
Xi B̄i Xi Hbi

0 0

] [
B̄T
i Xi 0

HT
bi Xi 0

]
+

∑
j∈S

π̄i j Pj

� Ξ̂i ,

with ρi any real positive number for each i ∈ S . Using Dynkin’s formula again,
wehave E{V (x(T ), i, T )} − V (x0, r0, 0) = E{∫ T

0 LV (x(s), i, s)ds}. Observing the
zero initial condition V (x0, r0, 0) = 0 and considering the performance function, for
any w(t) ∈ L2[0,∞), we have
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JT

= E{
∫ T

0
[zT (t)z(t) − γ 2wT (t)w(t) + LV (x(t), i, t)]dt} − E{V (x(T ), i, T )}

≤ E{
∫ T

0
[zT (t)z(t) − γ 2wT (t)w(t) + LV (x(t), i, t)]dt}.

Taking (7.21) into the above inequality gives

JT ≤ E

{ ∫ T

0
ηT (t) ∗

([
Ξ̂i PiWai

WT
ai Pi −γ 2 Inw

]

+
⎡
⎣CT

i + ET
i N

T
p K

T
i DT

i

MT
p D

T
i D

T
i

0

⎤
⎦

⎡
⎣Ci + Di Ki NpEi

Di Ki Mp

0

⎤
⎦

T )
η(t)dt

}
.

From Lemma 7.2 and Schur complement, we have JT < 0 if and only if there exist
real numbers εi , λi j ∈ R

+ such that

Ωi + εi

[
LT
i
0

] [
Li 0

] + ε−1
i

[
Xi Hai

0

] [
HT
ai Xi 0

]

+ ρ−1
i

[
ET
i N

T
p K

T
i ET

i N
T
p K

T
i L

T
i

MT
p K

T
i MT

p K
T
i L

T
i

] [
Ki NpEi Ki Mp

Li Ki NpEi Li Ki Mp

]

+ ρi

[
Xi B̄i Xi Hbi

0 0

] [
B̄T
i Xi 0

HT
bi Xi 0

]
+ γ −2WT

ai Pi PiWai

+
∑
j∈S

π̄i j Pj +
∑

j∈S , j �=i

[λi j

4
ε2i j I2n + 1

λi j
(Pj − Pi )

2]

+
[
Ci + Di Ki NpEi

Di Ki Mp

][
Ci + Di Ki NpEi

Di Ki Mp

]T

< 0

holds for any given ρi and each i, j ∈ S . Applying Schur complement and letting
T → ∞, it is verified that (7.20) guarantees J∞ < 0 for anyw(t) ∈ L2[0,∞), which
in turn guarantees γ -disturbance H∞ attenuation of the closed-loop system (7.15)
from w(t) to z(t).

Remark 7.7 Theorem 7.2 presents a sufficient condition for the solvability of the
robust H∞ control problem via output feedback controllers based on a high-gain
observer. It can be seen that the condition in (7.20) is not an LMI with respect to
the parameter εi since εi appears in (7.20) in a nonlinear fashion. Note that εi can
be any scalar in view of Lemma 7.3. Hence, as we have applied in Theorem 7.2, an
easy way to design an output feedback controller is to fix the parameter εi to solve a
strict LMI in Xi ,Yi and Ki , which defines a convex solution set; such an approach
was also adopted in [16, 23].
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Remark 7.8 Although the method proposed in Theorem 7.2 is an extension of
Theorem 7.1, it may cause some conservativeness compared with Theorem 7.1 since
the parameter ρi has been already given. In the case when ρi is not fixed, it can be
shown that (7.20) is equivalent to a bilinearmatrix inequality (BMI). Therefore, if one
can afford more computational efforts, better results will be obtained by solving this
BMI directly, which can be implemented by resorting to some effective algorithms,
such as the Lagrangian dual global optimization algorithm and the branch-and-cut
algorithm proposed in the works by [20, 39].

7.2.5 Numerical Simulation

The following variables have been chosen to describe the wheeled mobile manipu-
lator (see also Fig. 7.1): τl, τr : the torques of two wheels respectively; τ1: the torques
of the under-actuated joint, that is, τ1 = 0; θl , θr : the rotation angle of the left wheel
and the right wheel of the mobile platform respectively; v: the forward velocity of the
mobile platform; θ : the direction angle of the mobile platform; ω: the rotation veloc-
ity of the mobile platform, and ω = θ̇ ; θ1: the joint angle of the under-actuated link;
m1, Iz1, l1: the mass, the inertia moment, and the length for the link 1 respectively;
m2, Iz2, l2: the mass, the inertia moment, and the length for the link 2 respectively; r :
the radius of thewheels; 2l: the distance between twowheels; d: the distance between
the manipulator and the driving center of the mobile base;mp: the mass of the mobile
platform; Ip: the inertia moment of the mobile platform; Iw: the inertia moment of
each wheel;mw: the mass of each wheel; g: gravity acceleration. The mobile manip-
ulator is subject to the following constraint: ẋ cos θ − ẏ sin θ = 0. Using Lagrangian
approach, we can obtain the dynamic model with q = [θl, θr , θ1]T , then we could

Fig. 7.1 The wheeled
mobile manipulator in the
simulation
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obtain the dynamics as follows M(q)q̈ + C(q, q̇)q̇ + G(q) = Bτ . The details can
be found in [31].

As discussed in Sect. 7.2, we set the fully operational configuration represented
by OOO while three possible fault configurations can occur: OOF, OFO, and OFF,
where O represents operational joints(or wheels) and F represents failed joints. For
example, if we find that a fault occurs in τθ1 , then the fault configuration to validate
the proposed methodology is the OOF configuration.

We consider a workspace with a positioning domain which ranges from −8◦
to 12◦, with the velocities set to 1◦/s, and use 2 sectors of position in each joint,
denoted as I (−8◦∼2◦) and II (2◦∼12◦) to map the mobile manipulator workspace.
The linearization pointswith respect to I and II are chosen as−3◦ and 7◦, respectively.
Then, according to Sect. 7.2.3, 8 linearization points with 32 modes are found, which
are shown in Table7.2.

There exist 32modes for the above fault-tolerant example, whichmeans a 32 × 32
dimension transition ratematrixΠ is needed.WemaypartitionΠ into 16 submatrices
of 8 × 8 dimension as the following form

Π =

⎡
⎢⎢⎣

ΠOOO Πθl Πθ1 Πθl ,θ1

ΠR ΠOFO ΠR Πθ1

ΠR ΠR ΠOOF Πθl

ΠR ΠR ΠR ΠOFF

⎤
⎥⎥⎦ (7.22)

Table 7.2 The mode of operation

Mode Joint status Mode Joint status Linearization section

θr θl θ1

1 OOO 17 OOF I I I

2 OOO 18 OOF I II I

3 OOO 19 OOF I I II

4 OOO 20 OOF I II II

5 OOO 21 OOF II I I

6 OOO 22 OOF II II I

7 OOO 23 OOF II I II

8 OOO 24 OOF II II II

9 OFO 25 OFF I I I

10 OFO 26 OFF I II I

11 OFO 27 OFF I I II

12 OFO 28 OFF I II II

13 OFO 29 OFF II I I

14 OFO 30 OFF II II I

15 OFO 31 OFF II I II

16 OFO 32 OFF II II II

ybzhao@zjut.edu.cn



7.2 Robotic Manipulator System 167

where ΠOOO , ΠOFO , ΠOOF , and ΠOFF groups the relationships among the opera-
tion points in the set OOO, OFO, OOF, andOFF, respectively.Πθl andΠθ1 are related
to the probability that a fault occurs in joint θl and θ1, respectively, while Πθl ,θ1

represents the rate of fault occurrence in θl and θ1 simultaneously. From Markov
process theory, one can deduce that Πθl ,θ1 = 0. ΠR describes the probability that
the fault in certain joint is repaired. In the mobile manipulator system, we often
assumeΠR = 0, whichmeans the defective joint cannot be repaired. From the uncer-
tainty domain assumption (7.13), we suppose that Π = Π̄ + ΔΠ and the nominal
value selected heuristically as Π̄OOO(i, i)=−3.67, Π̄OOO(i, j)=0.42, Π̄OFO(i, i)=
−2.79, Π̄OFO(i, j)=0.36, Π̄OOF (i, i)=−2.98, Π̄OOF (i, j)=0.36, Π̄OFF (i, i)=
−1.96, Π̄OFF (i, j)=0.28, Π̄θl (i, i)=0.27, Π̄θl (i, j)=0, Π̄θ1(i, i)=0.46, Π̄θ1(i, j)=
0, Π̄R=Π̄θl ,θ1(i, j)=0,∀i, j = 1, 2, . . . , 8, i �= j . Then we set the estimation error
to 10% of the nominal values.

The systemparameters can be set asG=0,B= I3,Iz1=1.0 kgm2, Iz2=1.0 kgm2,

m1=1.0 kg,m2=1.1 kg, l=1.0m, l1=1.0m, l2=2.8m,mp =10.0 kg,mw=2 kg,
Ip =1 Nm, Iw =1.0 kgm2, r =0.5m. Then from (7.4), we get the MIMO linearized
systemmatrices Ai , Bi ,Wi , (i = 1, 2, . . . , 32)which are not listed here for economy
of space. We assume the output matrix parameters are mode-independent, and set
C = [1.1I, 0; 0, 0], D = [0, 0; 0, 1.15I ], E = [I, 0], where 0 represents the 3 × 3
zero matrix. Parametric uncertainty F(i, t), i = 1, 2, . . . , 32 is set as F(i, t) =
diag[0.9 sin(i t), 0.88 sin t cos(i t),0.2 cos2(2i t), 0.3 sin(i2t), 0.5 cos(2i2t), 0.7 cos2
(i t)] and torque disturbances d(t) are introduced to verify the robustness of the con-
trollers dr (t) = 0.023 sin(4t), dl(t) = 0.07 sin(3t)+0.09 cos2 t and d1(t) =
0.015 cos(5t). The disturbance is turned off after the fault introduction in correspond-
ing joint or wheel. Other matrices Ei , Li consisting of parametric uncertainties are
set to be within an appropriate range and are not listed for details here. We choose
ε = 0.01, b1 = 1.9, b2 = 2.6, b3 = 2.7. The mode-independent output controller
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Fig. 7.2 The tracking error response
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parameters in (7.14) are obtained from (7.8). We further assume that the noise atten-
uation level γ = 1.5 and, for simplicity and without generality, we take arbitrarily 4
modes in Table7.2. Solving the LMIs in (7.20)while setting εi = 1, i = 1, . . . , 4,we
obtain the mode-dependent controller gain K1, . . . , K4. For the page limit, we omit
these matrices. Figure7.2 gives the tracking error response of qd − q and q̇d − q̇
using the controller we get from Theorem 7.1 with the mode dependent controller
gain Ki , i = 1, . . . , 4 solved from LMIs (Fig. 7.3). The initial condition we used for
simulation is x0=[−0.2,0.3,0.3,−0.2,−0.1,0.2]T , r0=1 (Fig. 7.4).

From the simulation results, a fault first occurs in τl at tOFO . Then another fault
occurs in τ1 at tOFF so that the system mode transfers from OFO set to OFF set.
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The tracking error decays to equilibrium point under the mode-dependent controller,
which shows the fault tolerant characteristic. Meanwhile for comparison, we use a
traditional output feedback controller without considering robustness and fault toler-
ant method as in [19]. It is obvious that the tracking performance is then unbelievable
as Fig. 7.5 shows.

7.3 Optimal Control Problem of MJLS

7.3.1 An Description of Optimal Control Problem

Let (Ω,F , {Ft }t≥0, P) be a complete probability space, in which {Ft }t≥0 is a
filtration that satisfies the usual conditions. Then, consider the following MJLS:

ẋ(t) = A(r(t))x(t) + B(r(t))u(t),

y(t) = C(r(t))x(t), (7.23)

x(t0) = x0, r(t0) = i0,

where x(·) ∈ R
n is the continuous state, u(·) ∈ R

m is the control input and y(·) ∈ R
s

is the output. A(·), B(·),C(·) are known system matrices with appropriate dimen-
sions. r(·) is a right-continuous Markov chain taking values in a finite regime space
S = {1, 2, . . . , N }.

In addition to the regime space, we also introduce an action space A which
consists of all admissible actions. We can take any action α ∈ A (i) ⊆ A and apply
it to the system, where A (i) denotes the set of actions that are available in regime
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i ∈ S , A = ∪i∈SA (i). Here, we assume that the actions in different regime are
independent. The transition rate between different regimes is determined by the
action.

A stationary policy, denoted as v, can be seen as a mapping from regime spaceS
to action spaceA . Noting that the policy v(i), v(i) ∈ A (i) determines the action in
the regime i, i ∈ S . Let

V = ×i∈SA (i) = {(v(1), v(2), . . . , v(N )) : v(1) ∈ A (1), . . . , v(N ) ∈ A (N )}

be the set of all admissible policies, where “×” is called a Cartesian product, rep-
resenting the direct product of sets. According to the theory in [11] and the refer-
ences therein, a policy v ∈ V can be written as a vector v : (v(1), v(2), . . . , v(N )).
The transition rate matrix corresponding to the policy v ∈ V , is denoted by Π(v) =
[πi j (v(i))]Ni, j=1 whereπi j (v(i)) ≥ 0 for j �= i and

∑
j∈S πi j (v(i)) = 0 for all i ∈ S .

The jumping probability between regime i and j can be described by

P{r(t + Δ) = j |r(t) = i, v(i)} =
{

πi j (v(i))Δ + o(Δ), i �= j
1 + πi i (v(i))Δ + o(Δ), i = j

(7.24)

where Δ > 0, lim
Δ→0

o(Δ)/Δ = 0. In this chapter, we assume that x(t) and r(t) can

be perfectly observed at time t .
Our goal is to find a control law (u(·), v) ∈ U × V such that the following cost

function (or performance index) [8]

J (x0, r0, u(·), v) = E{
∫ ∞

t0

[xT (t)M(r(t))x(t) + uT (t)N (r(t))u(t)]dt∣∣x0, r0},
(7.25)

reaches itsminimum,whereU × V denotes the admissible control and policy space,
N (r(t)) and M(r(t)) are positive definite and positive semi-definite matrix for any
r(t) ∈ S . Without loss of generality, we let t0 = 0. For notational simplicity, we
denote J (u, v) as the above performance index, vi the corresponding policy v(i) and
Mi the corresponding matrix M(r(t) = i) for i ∈ S .

The following definitions and assumptions are needed.

Assumption 7.3 The overall system (7.23) and (7.24) is stochastically stabilizable
with admissible control and policy set (U ,V ). Moreover, for CT

i Ci = Mi , the sys-
tem (7.23) and (7.24) is stochastically observable.

Assumption 7.4 The admissible vector-valued policy space is

V = {v ∈ R
N : vi min ≤ vi ≤ vi max, ∀i ∈ S }, (7.26)

where vi min and vi max are given scalars. Noticing that V is compact and convex.

Assumption 7.5 The transition rate πi j (vi ) is continuous and smooth enough
w.r.t. vi .
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Definition 7.2 Given amatrix, then, we can construct a column vector by placing the
matrix’s columns under each other successively. The vector is denoted as Vec{Wi } ∈
C

mn . Furthermore, for all N-sequences of matrices W = (W1,W2, . . . ,WN ) with
Wi ∈ C

m×n, i = 1, . . . , N , V̂ec{W } ∈ C
Nmn also represents a columnvector by plac-

ing Vec{Wi }, i = 1, . . . , N under each other successively. Specifically, V̂ ec{W } can
be written as

V̂ ec{W } = [
Vec{W1}T ,Vec{W2}T , . . . ,Vec{WN }T ]T

.

Remark 7.9 The transition rate defined in (7.24) indicates that the selection of the
regime-dependent policy v ∈ V and the corresponding transition rate πi j are not
explicitly dependent on time. Take the manufacturing systems in Sect. 7.3.1 for
instance, the maintenance policy or the facility layout (which is the strategy when a
certain condition arises) is determined in advance and carried out at the initial time.

7.3.2 Two-Level Regulating Method

For the JLQ problem with the transition rate characterized by MDPs, a two-level
regulating approach is employed to find a better policy. Specific steps are as follows:
For the lower level, we find an optimal state feedback control law u ∈ U with a fixed
transition rate control policy; For the upper level, we seek for a new transition rate
control policy that has a lower cost than the present one. Iteratively, an optimal or
near-optimal policy can be obtained.

7.3.2.1 The Lower Level—State-Feedback Control Law

In the lower level, the objective is to find a control law u∗ ∈ U to minimize the
following performance index, i.e.

Ju∗(v) � J (u∗, v) ≤ J (u, v), for all u ∈ U , v ∈ V .

The JLQ problem with a given policy v ∈ V is to find a state feedback control
law u = u(x, t; v) such that the performance index reaches its minimum. This is a
reduced problem that can be solved by using the stochastic version of maximum
principle(see [40]) or dynamic programming(see [5] and the references therein).
Then, as in [25] or [9], the following Coupled Algebraic Riccati Equations(CARE)
can be obtained.

AT
i Pi + Pi Ai − Pi Bi N

−1
i BT

i Pi + Mi +
N∑
i=1

πi j (vi )Pj = 0, ∀i ∈ S . (7.27)
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Note here that the transition rate is policy-dependent.
Under Assumption 7.3, we obtain the following property of the solutions Pi for

each i ∈ S .

Lemma 7.4 For the above reduced problem under Assumption 7.3, the set of solu-
tions Pi of (7.27) for every i ∈ S are unique and positive definite. Furthermore, the
optimal steady state control law is

u∗(t) = −N−1
i BT

i Pi x(t) (7.28)

and the overall system is stable in the mean square sense that

E{xT (t)x(t)
∣∣x0, r0} → 0 as t → ∞.

Finally, the performance index under the optimal steady state control can be calcu-
lated as follows:

Ju∗(v) = xT0 Pi0x0. (7.29)

Proof Following similar procedure in the proof in [25], the conclusion can be readily
proved and thus the proof is omitted.

Denote the solution set by Pi . The above lemma implies that for any i ∈ S , the
solution Pi determines a continuous surjective mapping from the admissible policy
set V to the setP

Pi : V → P,

through the implicit constraint (7.27). Then, the performance index (7.29) is given by

Ju∗(v) = xT0 Pi0(v)x0. (7.30)

Notice that the above mapping corresponds to a new unique and continuous map-
ping from V to the set of the vectorized solution Pv, i.e.

Vec{Pi } : V → Pv

7.3.2.2 The Upper Level—Near-Optimal Policy

The gradient-based method is a popular optimization algorithm with the perfor-
mance gradient ∇ Ju∗ being its crux. However, the implicit relationship between v
and Pi makes the traditional way of computing the gardient based on the defini-
tion ∇ Ju∗(v) = lim

Δv→0
(Ju∗(v + Δv) − Ju∗(v)) almost impossible, since the twin evil
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of noise and non-linearity exists [45]. The policy iterative optimization algorithm is
proved to be an effective method to deal with this problem. In [45], an iterative algo-
rithm that based on the performance gradient was proposed to find policies efficiently
for the near-optimal problem with “long-run average” performance index. But for
the problem with general performance index, the performance potential can not well
characterize the properties of the system. In this chapter, we propose a new iterative
algorithm based on the gradient projectionmethod.Wewill show the effectiveness of
this algorithm in dealing with the near-optimal problem with the performance index
in (7.25).

Given the initial policy v0, our goal is to reduce the value of the performance
index Ju∗(v) by tuning the policy v ∈ V in some way. In other word, we need to find
a more effective policy than the initial policy v0.

Theorem 7.3 Under Assumption 7.3 and Assumption 7.5, the gradient of each entry
of Pi (∀i ∈ S ) with respect to V exists.

Proof For both side of Eq. (7.27), we take the operator Vec defined in Definition 7.2,
and obtain an equivalent equation

(AT
i ⊗ In + In ⊗ AT

i )Vec{Pi } − 1

2
(Pi Bi N

−1
i BT

i ⊗ In)Vec{Pi }

−1

2
(In ⊗ Pi Bi N

−1
i BT

i )Vec{Pi } + Vec{Mi }

+
N∑
i=1

(
πi j (vi ) ⊗ In2

)
Vec{Pj } = 0, (7.31)

where “⊗” refers to the Kronecker product. An important conclusion of the oper-
ator Vec for deriving the above equation is Vec{LK H} = (HT ⊗ L)Vec{K }) with
L , K , H being arbitrary real matrices.

Denote by Fi the left side of (7.31), and let F = (
FT
1 , FT

2 , ..., FT
N

)T
. The following

two statements need to be proved.
(a) F is continuously differentiable with respect to every entry of Pi ∈ P and

vi ∈ V , ∀i ∈ S .

(b) det (Ξ) �= 0, where Ξ represents the Jacobi matrix Ξ = ∂F/∂
[̂
Vec{P}

]T
and P represents the N -sequence matrices (P1, . . . , PN ).

The proof of statement (a) is straightforward by using formula 7.31 and Assump-
tion 7.5.
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In order to verify the correctness of statement (b), notice that

Ξ = ∂

{
diag

i=1,2,...,N

[
(AT

i − 1

2
Pi Bi N

−1
i BT

i ) ⊗ In + In ⊗ (AT
i − 1

2
Pi Bi N

−1
i BT

i )

+ Π(v) ⊗ In2
]̂
Vec(P) + V̂ec(M)

}
/∂

[̂
Vec(P)

]T

= diag
i=1,2,...,N

[(
AT
i − Pi Bi N

−1
i BT

i

) ⊗ In + In ⊗ (
AT
i − Pi Bi N

−1
i BT

i

)]

+ Π(v) ⊗ In2 , (7.32)

where M = (M1, . . . , MN ).
From the above equation, Ξ T is averaged dynamics matrix [33]. Therefore, the

necessary and sufficient condition for

lim
t→∞ E{xT (t)x(t)|x0, r0} = 0

in Lemma 7.4 is that all the eigenvalues of matrix Ξ T have negative real parts, (See
[32, 33] for details). Then, it gives that det(Ξ) �= 0 over the admissible policy set
V , i.e. and thus (b) is verified.

If the two statements (a) and (b) hold, then based on implicit function theorem
[26], the surjective mapping Vec{Pi }(v) determined by F = 0 is continuously dif-
ferentiable on V . That is, the existence and uniqueness of the gradient ∇Vec{Pi } for
every v ∈ V are proved.

Theorem 7.4 Under Assumptions 7.3 and 7.5, the Hessian matrix of each entry of
Pi (∀i ∈ S ) with respect to V exists.

Proof Theorem 7.3 implies that the surjective mapping Vec{Pi }(v) is continuously
differentiable with respect to any vl ∈ V , l ∈ S . Taking partial derivative with
respect to vl on both sides of the equation F = 0, and then by some equivalent
transformations, we obtain

{
diag

i=1,...,N

[(
AT
i − Pi Bi N

−1
i BT

i

) ⊗ In+ In ⊗ (
AT
i − Pi Bi N

−1
i BT

i

)]+Π(v) ⊗ In2
}

V̂ec{∂P
∂vl

} +
(

∂Π(v)

∂vl
⊗ In2

)
V̂ec{P} = 0. (7.33)

where ∂P
∂vl

= ( ∂P1
∂vl

, . . . , ∂PN
∂vl

).
Denote by Gl the left side of (7.33). Then similar to (a) and (b), the correctness

of the following two statements are to be verified.
(c) Gl is continuously differentiable with respect to every entry of Pi , ∂Pi/∂vl

and vi , ∀i ∈ S .

(d) det

(
∂Gl/∂

[̂
Vec{ ∂P

∂vl
}
]T)

�= 0.
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Similar to Theorem 7.3, the proof for statement (c) is also straightforward.
In order to verify the correctness of statement (d), we need to deal with the

following Jacobi matrix.

∂Gl/∂

[
V̂ec{∂P

∂vl
}
]T

=
{

diag
i=1,...,N

[(
AT
i −Pi Bi N

−1
i BT

i

) ⊗ In+ In ⊗ (
AT
i −Pi Bi N

−1
i BT

i

)]+Π(v) ⊗ In2
}

∂̂Vec{ ∂P
∂vl

}
∂

[̂
Vec{ ∂P

∂vl
}
]T + 0

= diag
i=1,...,N

[(
AT
i − Pi Bi N

−1
i BT

i

) ⊗ In + In ⊗ (
AT
i − Pi Bi N

−1
i BT

i

)] + Π(v) ⊗ In2 ,

Let ∂Gl/∂
[̂
Vec{ ∂P

∂vl
}
]T = Ξ , then, follow similar lines as in the proof of statement

(b), we can show the validity of statement (d).
Similar to Theorem 7.3, the proof is also based on implicit function theo-

rem. Following statement (c) and (d), the implicit function theorem implies that
Vec{∂Pi/∂vl}(v) is continuously differentiable on V . Then, we can show the exis-
tences and uniqueness of the Hessian ∇2Vec{Pi } for each v ∈ V .

Both above theorems are important in the preparation of the algorithm and the
corresponding convergence analysis. Next, the following projection theorem is intro-
duced [17].

Lemma 7.5 [17] (The Projection Theorem for Convex Sets) Let x0 ∈ R
n and Ω ⊂

R
n be a nonempty closed convex set. Then x̄ ∈ Ω is the solution of the following

problem
min{||x − x0||2 : x ∈ Ω},

if and only if for any y ∈ Ω , the inequality

(x̄ − x0)
T (y − x̄) ≥ 0

holds. Furthermore, it can be verified that the solution x always exists and is unique.

Definition 7.3 [17]Denote byΩ ⊂ R
n a nonempty closed convex set and let x ∈ Ω .

We define a mapping ProjΩ : R
n → Ω with

||ProjΩ(x) − x ||2 = min{||y − x ||2 : y ∈ Ω}.

Then, we call ProjΩ(x) is the projection of x onΩ . Lemma 7.5 implies that ProjΩ(x)
is well-defined.
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Denote by ProjV (v) the projection of any policies v ∈ R
N on V , where V is

defined in (7.26). Noting that the policy v does not necessary belong to V . Then,
decompose the projection ProjV (v) into each coordinate, we can obtain each com-
ponents of vector ProjV (v) by Definition 7.3.

[ProjV (v)]i =
⎧⎨
⎩
vi min i f vi ≤ vi min

vi i f vi min < vi < vi max

vi max i f vi ≥ vi max

, (7.34)

where [ProjV (v)]i denotes the i th component of ProjV (v).
In the following, we will establish our algorithm. When given an initial state x0

and an initial regime i0, we can calculate the gradient of the performance index (7.30)
as follows.

∇ Ju∗(v) = (IN ⊗ (xT0 ⊗ xT0 ))

[
(
∂Vec{Pi0}

∂v1
)
T

, (
∂Vec{Pi0}

∂v2
)
T

, ..., (
∂Vec{Pi0}

∂vN
)
T]T

(7.35)
The following algorithm is proposed based on the gradient projection method [3].

In the algorithm, the superscript k represents the kth iteration.

Algorithm 7.1 Step 1. Set k = 0 and the initial stepsize s(0) > 0. Let the small
positive constant ε > 0 denote a prescribed error margin. Suppose that the initial
policy v(0) ∈ V is also given.
Step 2. Given a policy v(k), evaluate the performance of the policy v(k),

• First, calculate the transition rate matrix Π(v(k)) and its derivative with respect
to vl : ∂Π

∂vl
|v(k) , l = 1, 2, . . . , N ;

• Then, calculate VecPi (v(k)), i = 1, 2, ..., N by (7.27) and calculate
∂VecPi0

∂vl
|v(k) ,

l = 1, 2, ..., N by (7.33);
• Finally, substituting the result of

∂VecPi0
∂vl

|v(k) , l = 1, 2, ..., N in (7.35), which

gives the performance gradient ∇ Ju∗(v(k));

Step 3. After evaluate the policy v(k), we will find a better policy v(k+1) according
to the following equation,

v(k+1) = ProjV
[
v(k) − s(k)∇ Ju∗(v(k))

]

where the updating of the policy is component-wise. That is, we should update
the policy for each regime based on (7.34). Another important thing is the stepsize
s(k). Here we give the constraints the chosen stepsize should be met.

lim
k→∞ s(k) = 0,

∞∑
k=0

s(k) = +∞ (7.36)
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Step 4. The stop condition for the iteration: If ||Ju∗(v(k+1)) − Ju∗(v(k))|| < ε, the
algorithm stops; otherwise, set k = k + 1 and go to step 2.

The following theorem gives the convergence results of the proposed algorithm.

Theorem 7.5 For the Algorithm 7.1 with Assumptions 7.3, 7.4 and 7.5, we have the
convergence results,

1. The difference between v(k+1) and v(k) tends to 0, i.e. limk→∞ ||v(k+1) − v(k)|| = 0
and the limit point of v(k) is also a stationary point;

2. The infinite sequence {J ∗(v(k))} decreases and converges to a finite value;
3. Furthermore, if Ju∗(v) is a strongly convex function in V , then the sequence will

converge to an unique optimal policy v∗, which will minimize the performance
index Ju∗(v) in V .

Proof This convergence result is mainly based on Theorems 7.3 and 7.4. According
to the results developed in [3, 4], the policy v(k), whose update is based on gradient
projection algorithm with the stepsize in (7.36), converges to the stationary point v∗,
and the performance index {Ju∗(v(k))} also converges to a finite value, if the following
two conditions are met,

(i) Ju∗(v) is continuously differentiable and bounded on V ,
(ii) the gradient ∇ Ju∗(v) is Lipschitz continuous on any bounded subset of V , i.e.

||∇ J ∗(v′) − ∇ J ∗(v′′)|| ≤ L||v′ − v′′|| for some L > 0, ∀v′, v′′ ∈ V (7.37)

Because of the compactness of V and the conclusion that Ju∗(v) is continuously
differentiable in Theorem 7.3, we can obviously see that the condition (i) is met.
For condition (ii), Theorem 7.4 indicate that the Hessian of Pi ,∀i ∈ S defined in
any bounded subset of V is bounded in the matrix 2-norm sense. That is, ∇Pi (v) is
Lipschitz continuous on any bounded subset of V [35]. By definition, we have the
following inequality holds for any v′, v′′ ∈ V ,

||∇ J ∗(v′) − ∇ J ∗(v′′)|| ≤ ||x0||2||∇Pi (v
′) − ∇Pi (v

′′)|| ≤ L0||x0||2||v′ − v′′||

where L0 > 0 is a constant. Set L = L0||x0||2, we have (7.37) for any bounded x0.
Therefore, Algorithm 7.1 will converge. This completes the proof.

Remark 7.10 The policy-based optimization problem is solved by Algorithm 7.1,
which updates the policy recursively to obtain a better one. In Step 2, when the policy
v(k) is given, we need to solve the CARE (7.27) to obtain Pi (v(k)), and then,∇ Ju∗(vk)
can be obtained by solving the Eq. (7.33). This step seems to be the most complicated
part in the algorithm. It is worth noting that once we get Pi , i ∈ S , the Eq. (7.33)
becomes the linear constraints with respect to V̂ec{ ∂P

∂vl
}, which can be solved fairly

efficiently. Therefore, once we obtain the solution of the JLQ problem in the lower
level, the computational cost will become relatively small.
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Remark 7.11 In Algorithm 7.1, the diminishing stepsize rather than the other choice
of stepsize including constant stepsize, Armijo rule, limited minimization rule, is
used, mainly for the following three reasons. (1) Diminishing stepsize is an effective
method when the Lipschitz constant L is unknown. We only need to verified the
existences of L to guarantee the convergence. Noting that the computational cost is
very high when computing L through obtaining the explicit expression of Hessian,
hence thediminishing stepsize ismuchmore efficient. (2) For somechoice of stepsize,
such as Armijo rule, the “stepsize judge” step is needed in each iteration, which will
lead to large computational cost. This is due to the fact that each judgement is based
on the variation of v, and the repetitive computation for CAREs is costly. However,
this procedure is avoided for diminishing stepsize, thus the lower cost. (3) the policy
spaceV is compact, which implies the boundedness of the generated policy sequence
{vk}. Then, the convergence of the algorithm with the diminishing stepsize rule is
enhanced [3]).

7.3.3 Two Special Cases

In the previous subsection, we establish the general policy iterative algorithm based
on the gradient projection method. However, this algorithm is no longer applicable
without the initial state x0 and initial regime r0. In this part, we investigate two special
cases, where the obtained optimal policy or near-optimal policy is more practical.

7.3.3.1 The Scalar Case

First, we consider the scalar case, where the performance index (7.30) can be rewrit-
ten as Ju∗(v) = x20 Pi0(v). Suppose πi j > 0, i �= j , we hope that the near-optimal
policy or the optimal policy obtained when Ju∗(v) is strict convex, i.e. “strongly time
consistent” [15]. That is, once a near-optimal is determined in advance, then for any
t ∈ [t0,∞), the policy is still near-optimal during [t,∞). That is to say, the policy
is steady-state global near-optimal.

Theorem 7.6 For the scalar system (7.23), (7.24) with performance index (7.25),
the near-optimal policy has nothing to do with the initial state x0 and the initial
regime i0.

In the following, we give some preparations for the proof. All of the following
definitions and propositions are the general theory of M-matrices [2] and gradient
projection method [3].

Definition 7.4 [21] Consider a real n × n matrix A = (ai j ),

• if the off-diagonal entries are non-negative, i.e. ai j ≥ 0 for all i �= j , then, we call
A the Metzler matrix.
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• if the off-diagonal entries are non-positive, i.e. ai j ≤ 0 for all i �= j , then, we call
A the Z -matrix.

• if all the eigenvalues of A are positive, then, we call A the P-matrix.
• if A is both Z -matrix and P-matrix, then, we call A the M-matrix.

Proposition 7.1 If all the entries of M-matrix A is nonzero, then A is nonsingular
and all the entries of its inverse A−1 are positive.

Proposition 7.2 A policy v ∈ V is a stationary point of Ju∗(v) if and only if v =
ProjV [v − t∇ Ju∗(v)] for all t > 0.

Proof of Theorem 7.6

Proof Our goal is to prove that v∗ is a stationary point of J1,u∗(v) � x21 Pi1(v) in the
policy space V for all x1, x2 ∈ R

n and i1, i2 ∈ S if and only if v∗ is also a stationary
point of J2,u∗(v) � x22 Pi2(v).

In light of (7.32), we can rewrite Eq. (7.33) as follows,

Ξ · V̂ec{∂P
∂vl

} = −
(

∂Π(v)

∂vl
⊗ In2

)
V̂ec{P}. (7.38)

In the above equation, Ξ is a Metzler matrix. We have proved in Theorem 7.3 that
all the eigenvalues of matrix Ξ have negative real part. Then, from Definition 7.4,
−Ξ is an M-matrix and nonsingular. Let

Φ = −Ξ−1 = [φ1 φ2 · · · φN ].

In the following, ki (i ∈ S ) denotes an N -dimensional column vector where

the j th entry of ki =
{
1 j = i
0 otherwise

.

Consider the i th entry of the vector V̂ec{ ∂P
∂vl

}, i ∈ S . For any regime l ∈ S , vl is
the policy that can only apply to the corresponding regime l, then we obtain

∂Pi (v)

∂vl
= kTi · Φ

∂Π(v)

∂vl
V̂ec{P} = αl k

T
i · Φ · kl, (7.39)

where αl = ( ∂πl1
∂vl

P1 + ∂πl2
∂vl

P2 + . . . + ∂πlN
∂vl

PN ).
Choose arbitrary two initial regimes, i1 and i2. Substitute i into (7.39) with i1 and

i2 respectively, we obtain

∂Pi1(v)

∂vl

∂Pi2(v)

∂vl
= ∂Pi1(v)

∂vl

[
∂Pi2(v)

∂vl

]T

= α2
l k

T
i1Φkl · kTl ΦT ki2 = α2

l k
T
i1 [φlφ

T
l ]ki2
(7.40)
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Proposition 7.1 implies that for every l ∈ S , each entry of matrix φl is positive.
Together with (7.39) and (7.40), the following two statements hold.

(e)
∂Pi1 (v)

∂vl

∂Pi2 (v)
∂vl

≥ 0,

(f)
∂Pi1 (v)

∂vl
= 0 if and only if

∂Pi2 (v)
∂vl

= 0.

Suppose that v∗ is a stationary point of J1,u∗(v) = x21 Pi1(v). Then, we derive the
gradient of J1,u∗ and J2,u∗ at v∗,

∇ J1,u∗(v∗) = x21∇Pi1(v
∗), ∇ J2,u∗(v∗) = x22∇Pi2(v

∗), (7.41)

where x1, x2 ∈ R
n are the initial states. From the system dynamics (7.23) and the

control law (7.28), we can conclude that x1 and x2 are nonzero.
According to statements (e) and (f), we can verify that there exists a positive

constant dl such that the following equality holds.

∂Pi2(v)

∂vl

∣∣∣∣
v∗

= dl
∂Pi1(v)

∂vl

∣∣∣∣
v∗

.

By the above equality and formula (7.41), we obtain

∇ J2,u∗(v∗) = θx21D∇Pi1(v
∗) = θD∇ J1,u∗(v∗), (7.42)

where θ = (x2/x1)2 > 0, D = diag
l=1,2,...,N

{dl}, dl > 0.

From Proposition 7.2, we see that for all t > 0, each component of v∗ satisfies the
following equation,

v∗
i = ProjV [v∗

i − t
∂ J1,u∗(v)

∂vi

∣∣∣∣
v∗

],

Consider the optimality condition [3], if v∗ is a stationary point of J1,u∗(v) in V , then

∂ J1,u∗(v)

∂vi

∣∣∣∣
v∗

= 0, if vi min < v∗
i < vi max, (7.43)

∂ J1,u∗(v)

∂vi

∣∣∣∣
v∗

≥ 0, if v∗
i = vi min, (7.44)

∂ J1,u∗(v)

∂vi

∣∣∣∣
v∗

≤ 0, if v∗
i = vi max. (7.45)

For the projection of

[
v∗
i − t ∂ J2,u∗ (v)

∂vi

∣∣∣∣
v∗

]
when t > 0, three cases are considered.

1. vi min < v∗
i < vi max.

ybzhao@zjut.edu.cn



7.3 Optimal Control Problem of MJLS 181

The optimality condition (7.43) indicates that ∂ J1,u∗ (v)
∂vi

∣∣∣∣
v∗

= 0, and the statement (e)

indicates that ∂ J1,u∗ (v)
∂vi

∣∣∣∣
v∗

= 0 if and only if ∂ J2,u∗ (v)
∂vi

∣∣∣∣
v∗

= 0. Then, we can conclude

that

ProjV [v∗
i − t

∂ J2,u∗(v)

∂vi

∣∣∣∣
v∗

] = v∗
i

2. v∗
i = vi min.

The optimality condition (7.44) indicates that ∂ J1,u∗ (v)
∂vi

∣∣∣∣
v∗

≥ 0. Considering (7.42)

and notice t > 0, θ > 0, di > 0, we obtain

v∗
i − t

∂ J2,u∗(v)

∂vi

∣∣∣∣
v∗

= v∗
i − tθdi

∂ J1,u∗(v)

∂vi

∣∣∣∣
v∗

≤ v∗
i = vi min

From the definition of the projection on V in (7.34), we can conclude that

ProjV [v∗
i − t

∂ J2,u∗(v)

∂vi

∣∣∣∣
v∗

] = vi min = v∗
i .

3. v∗
i = vi max.

Take a similar line as the above case, since ∂ J1,u∗ (v)
∂vi

∣∣∣∣
v∗

≤ 0, t > 0, θ > 0, di > 0.

we have

v∗
i − t

∂ J2,u∗(v)

∂vi

∣∣∣∣
v∗

= v∗
i − tθdi

∂ J1,u∗(v)

∂vi

∣∣∣∣
v∗

≥ v∗
i = vi max,

Then, by (7.34), we also can conclude that

ProjV [v∗
i − t

∂ J2,u∗(v)

∂vi

∣∣∣∣
v∗

] = vi max = v∗
i .

The above conclusions indicate that for any t > 0, we have

v∗ = ProjV [v∗ − t∇ J2,u∗(v∗)] (7.46)

In light of Proposition 7.2, (7.46) is equivalent to the condition that v∗ ∈ V is a
stationary point of J2,u∗(v). Notice that x1, x2, i1, i2 are all chosen arbitrarily, we
then complete the proof of Theorem 7.6.

By the conclusion in Theorem 7.6, Algorithm 7.1 can be simplified by setting the
initial state and initial regime as x0 = 1 and i0 = 1 to obtain a near-optimal policy,
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Algorithm 7.2 Step 1. Set k = 0 and the initial stepsize s(0) > 0. Let ε > 0
be the prescribed error margin. Supposed that the initial policy v(0) ∈ V is also
given.
Step 2. Given a policy v(k), evaluate the performance of this policy,

• First, calculate the transition rate matrix Π(v(k)) and its derivative with respect to
vl : ∂Π

∂vl
|v(k) , l = 1, 2, . . . , N ;

• Then, calculate Pi (v(k)), i = 1, 2, ..., N by (7.27);
• Finally, calculate ∂P1

∂vl
|v(k) , l = 1, 2, ..., N by (7.33)

Step 3.After evaluating the policy v(k), we will find a better policy v(k+1) according
to the following equation,

v(k+1) = ProjV
[
v(k) − s(k)∇P1(v

(k))
]
.

where the updating of the policy is component-wise. That is, we should update the
policy for each regime based on (7.34). Besides, we choose the stepsize s(k) > 0
which meet the following constraints

lim
k→∞ s(k) = 0,

∞∑
k=0

s(k) = +∞. (7.47)

Step 4. The stop condition for the iteration:
If ||P1(v(k+1)) − P1(v(k))|| < ε, the algorithm stops; otherwise, set k = k + 1 and
go to step 2.

Remark 7.12 Notice that we need the assumption πi j > 0, i �= j such that Propo-
sition 7.1 can be used in the proof of Theorem 7.6. Here, It is worth pointing out
that this constraint can be released. For instance, from the M-matrix theory [2], if an
M-matrix with some zero entries is irreducible, then all the entries of its inverse are
positive.

Remark 7.13 In the scalar case, a near-optimal policy without knowing the initial
state and regime can be found if the system parameters remain unchanged. The
advantage mainly lie in the fact that even the system is in operation, one can still
seek for a near-optimal policy by Algorithm 7.1, and then apply the policy to the
system at any time. This can be seen as an “on-line decision” rather than the “off-
line decision” as interpreted in Remark 7.9. However, for the non-scalar case, this
property may not hold any more.

7.3.3.2 The Case with Unknown Initial State

The conclusion in Theorem 7.6 is not applicable to multiple dimensional systems.
In this part we consider the case where the initial state x0 is unknown. By assuming
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that x0 is a random variable with known statistical properties, we can decouple x0
from the control law. This method has been used to deal with other control problem,
see, [24, 28, 36].

Assumption 7.6 The initial state x0 is a zero-mean random variable with covariance
E{x0xT0 } = σ 2 In .

Under the above assumption, Ju∗(v) = xT0 Pi0x0 becomes a random variable. So
we can use the expectation Ĵu∗(v) = E{xT0 Pi0x0} to characterize the performance.
Then, we have

Ĵu∗(v) = E{xT0 Pi0x0} = tr [Pi0E{x0xT0 }] = tr [Pi0σ 2 In] = σ 2tr [Pi0 ] (7.48)

and the corresponding gradient is

∇ Ĵu∗(v) = σ 2[tr(∂Pi0
∂v1

), tr(
∂Pi0
∂v2

), . . . , tr(
∂Pi0
∂vN

)]T . (7.49)

In the following, we establish an algorithm to seek for a near-optimal policy for
this case.

Algorithm 7.3 Step 1. Set k = 0 and the initial stepsize s(0) > 0. Let the small
positive constant ε > 0 denote the prescribed error margin. Suppose that the
initial policy v(0) ∈ V is also given.
Step 2. Given a policy v(k), evaluate the performance of this policy,

• First, calculate the transition rate matrix Π(v(k)) and its derivative with respect to
vl : ∂Π

∂vl
|v(k) , l = 1, 2, . . . , N

• Then, calculate VecPi (v(k)), i = 1, 2, ..., N by (7.27) and calculate
∂VecPi0

∂vl
|v(k) ,

l = 1, 2, ..., N by (7.33);
• Filially, calculate the performance gradient ∇ Ĵu∗(v(k)) by (7.49);

Step 3. After evaluate the policy v(k), we will find a better policy v(k+1) according
to the following equation,

v(k+1) = ProjV
[
v(k) − s(k)∇ Ĵu∗(v(k))

]
,

where the updating of the policy is component-wise. That is, we should update
the policy for each regime based on (7.34). Besides, we choose the stepsize s(k)

which meet the following constraints:

lim
k→∞ s(k) = 0,

∞∑
k=0

s(k) = +∞. (7.50)

Step 4. The stop condition for thr iteration:
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If || Ĵu∗(v(k+1)) − Ĵu∗(v(k))|| < ε, the algorithm stops; otherwise, set k = k + 1 and
go to step 2.

The convergence analysis is similar as Theorem 7.5, thus is omitted here.

Remark 7.14 WithAssumption 7.6, themodifiedperformance index is a scalar rather
than the random variable, which is desirable. Noting that this assumption is not
general, so examining its rationality may be needed for any practical problem.

7.3.4 Numerical Simulation

In this section, we demonstrate the developed results by two examples. In the first
example, a near-optimal policy found by Algorithm 7.1 can effectively improve the
performance. The second example considers the scalar case where the near-optimal
policy is independent on the initial state and the initial regime.

Example 7.1 Consider a two-dimension MJLS with two regimes. Let

A1 =
[
3 1
1 0

]
A2 =

[
2 1
1 6

]

B1 =
[
0.6
0.2

]
B2 =

[
1

−0.1

]

M1 =
[
1 0
0 1

]
M2 =

[
1 0
0 1

]

N1 = 1.4 N2 = 2.1

Π(v) =
[−2e−v1 2e−v1

e−v2 −e−v2

]

In this example, some prescribed parameters are given as ε = 1 × 10−5, v(0) =
[0.3 0]T , s(k) = 0.05 × k−1/3 for all k. Denote the admissible policy space by

V = {v ∈ R
N : −2 ≤ vi ≤ 2, i = 1, 2}. (7.51)

Assume the initial state and initial regime to be x0 = [−1, 0.5]T , r0 = 1. Then, apply-
ing Algorithm 7.1, a near-optimal policy v∗ = [−0.4917, 2] can be obtained within
50 iterations. The performance curve during the iteration procedure is illustrated in
Fig. 7.6. Finially, the performance is J ∗ = 77.5941 which is about 26% better than
the original one.

ybzhao@zjut.edu.cn



7.3 Optimal Control Problem of MJLS 185

Fig. 7.6 Performance
improvement (Non-Scalar
Case)
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Example 7.2 Consider a two-regime scalar MJLS where

A1 = 1.3, A2 = 1, B1 = 1, B2 = 1.2,

M1 = 1.1, M2 = 2, N1 = 1.2, N2 = 0.8.

and

Π(v) =
[−0.4v21e

v1 0.4v21e
v1

3ev
2
2 −3ev

2
2

]

In this example, parameters are given as ε = 1 × 10−5, v(0) = [0.7 0.2]T , s(k) =
0.6 × k−1/4 for all k. Denote the admissible policy space by

V = {v ∈ R
N : −1 ≤ vi ≤ 1, i = 1, 2}. (7.52)

Assume the initial state and initial regime to be x0 = 1, r0 = 1, then a near-
optimal policy v∗ = [1, 0] is obtained. The performance converges to J ∗ = 3.1362.
Figure7.7a shows the performance curve during the iteration procedure. Next,
the initial state and initial regime are changed to x0 = 2, r0 = 2, then the near-
optimal policy remains v∗ = [1, 0] and the corresponding performance converges
to J ∗ = 9.0201. This procedure is shown in Fig. 7.7b.

Due to the simplicity of the example we can describe the performance index on
the policy space completely. The two cases are shown in Figs. 7.8a, b, respectively.
Although the performance is changed with the initial state and initial regime, the
near-optimal policy remains unchanged.
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Fig. 7.7 Performance
improvement for Scalar Case
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(a) Initial condition:x0 = 1,r0 = 1

0 5 10 15 20 25
9

9.05

9.1

9.15

9.2

9.25

9.3

9.35

Iteration Steps

P
er

fo
rm

an
ce

(b) Initial condition:x0 = 2,r0 = 2

7.4 Summary

In the first part of this chapter, a Markovian fault-tolerant model is developed for a
mobilemanipulatorwith two independentwheels andmultiple joints. Theuncertainty
of the transition rate matrix is considered in an element-wise way.We have presented
sufficient conditions on the existence of mode-dependent dynamic output feedback
control based on a high-gain observer.

The second part deals with the JLQ problem of a class of MJLS whose regime
transition rates are determined by the initial policy. Based on the two-level regulating
method and the gradient projection method, an algorithm is proposed to seek a near-
optimal policy, and the convergence result of the algorithm is also developed. If
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Fig. 7.8 Performance over
the policy space for Scalar
Case
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(a) Initial condition:x0 = 1,r0 = 1
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(b) Initial condition:x0 = 2,r0 = 2

the property of concavity is unknown, some special method, including simulated
annealing [42], quantum annealing, Tabu search, can be employed to find a global
optimum policy. These will be our future works.
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A
Admissible control set U , 122
Asymptotic stability

in mean-square, 8
with probability 1, 8

Asynchronous switching, 47
system, 47

Average dwell time, 51
Averaged dynamics matrix, 174

B
BMI, 165
Brownian motion, 45

C
CARE, 171
Cartesian product, 170
CAS, 134
Centripetal and Coriolis torques, 152
Characteristic function, 6
Class

CK function, 116
K function, 116
K∞ function, 9
KL function, 9
VK function, 116

Comparison principle, 115
Complete probability space, 6
Control action selector, see CAS
Cost function, 170
Coupled algebraic riccati equations, see

CARE
Coupled Riccati equations, 128

D
Data packet disorder, 138
Detection delay, 17, 46
Diagonal block matrix, 31
Diminishing stepsize, 178
Dwell time, 7
Dynamic output feedback controller, 18
Dynkin’s formula, 26, 34, 101, 163

E
Exponentially stable in mean-square, 9
Exponential stability in p-th moment, 9
Extended asynchronous switching, 49

F
False alarm, 17, 46

rate, 18
Fatou’s lemma, 76, 101
Fault-tolerant manipulator control, 158
Free weighting matrix, 24

G
GASiP, 9

H
Hamilton-Jacobi-Bellman equation, 123
HDS, 1
High-gain observer, 155
H∞ control, 19
Homogeneous ergodic Markov chains, 139
Hybrid Dynamic Systems, see HDS
Hybrid stochastic delay system, 74
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I
Inertia matrix, 152
Infinitesimal generator, see Infinitesimal op-

erator, 20
Infinitesimal operator, 7, 10
Initial distribution, 138
ISSiM, 9

J
Jensen’s inequality, 54, 116
JLQ, 151
JLQG, 151
JLS, 150
Jump linear

quadratic gaussian, see JLQG
quadratic, see JLQ
system, see JLS

K
Kronecker product, 173

L
Lasalle stability theorem, 100
Limit probability distribution, 139
Linear growth condition, 46, 99
Lipschitz condition, 46
LKF, 23
Lyapunov function, 104

M
Markov chain, 6
Markov decision process, seeMDP
Markovian jump

linear system, seeMJLS
systems, seeMJS

Markovian jump linear stochastic systems,
118

Matrix-valued function, 99
Maximum

forward channel delay, 134
number of consecutive data packet
dropout, 134

MDP, 151
Metzler matrix, 178
Mismatched time interval, 72
MJLS, 149
MJS, 1, 6
M-matrix, 179
Moment generating function, 63

N
NCS, 5, 131
Near-optimal policy, 171
Networked control systems, see NCS
Network induced delay, 133
Newton-Leibniz formula, 24
Nominal system parameter, 16
Nonholonomic constraint, 152
Nonlinear jump system, 98

O
Optimal state feedback control law, 171
Output feedback controller, 155

P
Packet-based control, 133
PCiP-γ , 120
PCpM, 120
Performance gradient, 176
P-matrix, 179
Practically controllable in probability γ , see

PCiP-γ
Practically controllable in the pth mean, see

PCpM
Practically stable, 116

in probability, see PSiP
in the pth mean, see PSpM

Practical stability, 116
Projection theorem, 175
PSiP, 116
PSpM, 116
Pth moment ISS, 9

R
Razumikhin-type stability criterion, 58
Razumikhin-type theorem, 62
Robust stability, 15
Robust stabilization, 19
Robust stochastic stability, 159
Round trip delay, 138

S
SAS, 100
Schur complement, 20
SISS, 9
SS, 159
Stability with probability 1, 8
State transition matrix , 6
Stationary policy, 170
Stochastically asymptotically stable, see

SAS
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Stochastically stable, see SS
Stochastic input-to-state stability, see SISS
Stochastic nonlinear system, 114
Stochastic stability, 8
Stopping time, 101
Strong solution, 101
Switch

frequency, 7
law, 7
time instant, 7

Switched stochastic nonlinear delay system,
83

Synchronous controller, 59

T
Tchebycheff inequality, 117
Time-stamped, 134
Time-synchronized, 134

U
Uncertainty domain, 158
Uniform boundness

in probablity ρ, 8
with probablity 1, 8

Uniformly practically stable, 118
in probability, see UPSiP
in the pth mean, see UPSpM

UPSiP, 116
UPSpM, 116

V
Vector-valued policy space, 170

W
Wheeled mobile manipulator, 149

Z
Z-matrix, 179
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