刘斌琨论文被《IEEE Transactions on Components, Packaging and Manufacturing Technology》接受发表
刘斌琨 题为 “PCB Layout-Based Spatio-Temporal Graph Convolution Network for Anomaly Prediction in Solder Paste Printing” 的论文已被《IEEE Transactions on Components, Packaging and Manufacturing Technology》接受发表。该论文摘要如下:
Predicting solder paste printing anomaly on the printed circuit board (PCB) can improve first-pass yield and reduce rework costs. Considering the impact of PCB layout on the quality of solder paste printing, we propose a PCB layout-based spatio-temporal graph convolution network, in which we construct a graph to model the spatial distribution of solder pads. Specifically, since the printing quality is related to the spatial distribution of the pads, we convert the PCB to a graph according to the Pearson correlation of the printing quality and then trim the edges of the graph with a correlation threshold to model the spatial distribution of solder pads. To model the timevarying physicochemical properties of the solder paste, normalize the production time, calculate the attention of the production time, and reconstruct the printing quality based on the attention. And then, we devise a weighted loss to improve the performance of predicted printing defective products due to the scarcity of defective products. Ultimately, the predicted printing quality is compared with the inspection threshold to estimate degree of anomaly. The proposed method is validated on six-day of real solder paste printing data, improving the average F1 score by 0.057 and the average accuracy by 0.022 for three typical anomalous printing behaviours over two temporal prediction scales.